cho hình chữ nhật ABCD có AB=8cm, BC=6cm.vẽ đường cao Ah của tam giác ADB
a. chứng minh tam giác AHB đồng dạng tam giác BCD
b. chứng minh AD2=DH.DB
c.tính độ dài đoạn thẳng DH, AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)
hay \(AD^2=HD\cdot BD\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
Do đó: ΔAHBΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
chung
Do đó: ΔADHΔBDA
Suy ra:
hay
a) Xét hình chữ nhật ABCD có:
AB//CD => \(\widehat{ABH}=\widehat{BDC}\) (2 góc so le trong)
Xét tam giác AHB và tam giác BCD có:
\(\widehat{ABH}=\widehat{BDC}\left(cmt\right)\)
\(\widehat{AHB}=\widehat{BCD}=90^0\)
=> \(\Delta AHB\sim\Delta BCD\left(g.g\right)\)
b) Xét tam giác ADH và tam giác BDA có:
\(\widehat{ADB}\) chung
\(\widehat{AHD}=\widehat{BAD}=90^0\)
\(\Rightarrow\Delta ADH\sim\Delta BDA\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{DH}=\dfrac{DB}{AD}\Rightarrow AD^2=DH.DB\)
c) Xét tam giác BDC vuông tại C có:
\(BD^2=BC^2+DC^2\) (Định lý Pytago)\(\Rightarrow BD=\sqrt{BC^2+CD^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Ta có: \(AD^2=DH.DB\left(cmt\right)\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
Xét tam giác ADH vuông tại H có:
\(AD^2=AH^2+DH^2\)( định lý Pytago)
\(\Rightarrow AH=\sqrt{AD^2-DH^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)
a, Xét tam giác AHB và tam giác BCD ta có :
^AHB = ^BCD = 900
^BDC = ^ABH ( so le trong )
Vậy tam giác AHB ~ tam giác BCD ( c.g.c )
b, Xét tam giác ADB và tam giác HAD
^A = ^H = 900
^D _ chung
Vậy tam giác ADB ~ tam giác HAD ( g.g )
⇒ADAH=BDAD⇒ADAH=BDAD( tỉ số đồng dạng ) ⇒AD2=BD.DH
c) -Ta có: AD2= DH.DB(cmt)
=> DH= AD2:DB
DH=3^2:5=9:5=1,8
- Xét tam giác BDC vuông tại C có:
DB^2 = BC^2+CD^2
DB^2=3^2+4^2=25
=> BD=5cm
Ta có: tam giác AHB ~ tam giác BCD(CM câu a)
=> AH/BC=AB/BD
=> AH=AB.BC:BD
<=> AH=3.4:5=2,4cm
d) Ta có diện tích tam giác AHB= 1/2 AB.AH=1/2x2,4x4=4.8
Ta có diện tích tam giác BCD= 1/2 BC.DC=1/2x3x4=6
S ABH/ S BCD= 4,8/6=4/5
Tham khảo lời giải tại link : https://h.vn/hoi-dap/question/249043.html
a) Xét \(\Delta AHB\) và \(\Delta BCD\) có:
\(\widehat{AHB}=\widehat{BCD}=90^0\)
\(\widehat{ABH}=\widehat{BDC}\) (cùng phụ với góc DBC )
suy ra: \(\Delta AHB~\Delta BCD\)
b) Xét \(\Delta ADB\) và \(\Delta HDA\) có:
\(\widehat{DAB}=\widehat{DHA}=90^0\)
\(\widehat{ADB}\) CHUNG
suy ra: \(\Delta ADB~\Delta HDA\)
\(\Rightarrow\)\(\frac{AD}{HD}=\frac{DB}{DA}\)
\(\Rightarrow\)\(AD^2=DH.DB\) (ĐPCM)
c) Áp dụng định lý Pytago ta có:
\(BD^2=AD^2+AB^2\)
\(\Leftrightarrow\)\(BD^2=6^2+8^2=100\)
\(\Leftrightarrow\)\(BD=\sqrt{100}=10\) cm
\(\Delta ADB~\Delta HDA\) \(\Rightarrow\) \(\frac{AD}{HD}=\frac{AB}{HA}=\frac{DB}{DA}\)
hay \(\frac{6}{HD}=\frac{8}{HA}=\frac{10}{6}=\frac{5}{3}\)
suy ra: \(DH=3.6cm\) \(AH=4,8cm\)
a.
Xét tam giác AHB và tam giác BCD có:
góc H = C = 90o
góc ABH = BDC ( so le trong)
Do đó: tam giác AHB ~ BCD ( g.g)
b.
Xét tam giác ADH và BDA có:
góc D chung
góc AHD = BAD = 90o
Do đó: tam giác ADH ~ BDA
=> \(\dfrac{AD}{BD}=\dfrac{DH}{AD}\Rightarrow AD^2=BD.DH\)
c.
Tam giác ABD vuông tại A
=> BD2 = AB2 + AD2
=> BD2 = 82 + 62
=> BD = 10 cm
Ta có: tam giác ADH~BDA
=> \(\dfrac{AD}{BD}=\dfrac{AH}{AB}\Rightarrow AH=\dfrac{AD.AB}{BD}=\dfrac{6.8}{10}=4,8\)
Tam giác ADH vuông tại H
=> AD2 = AH2 + DH2
=> DH2 = AD2 - AH2
=> DH2 = 62 - 4,82
=> DH = 3,6
Vậy: AH = 4,8 cm và DH = 3,6 cm