2. Thu gọn đa thức sau:
M= \(x^3+y^3+z^3+x^3-y^3+z^3+x^3+y^3-z^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^3+y^3+z^3+x^3-y^3+z^3+x^3+y^3-z^3.\)
\(=\left(x^3+x^3+x^3\right)+\left(y^3-y^3+y^3\right)+\left(z^3+z^3-z^3\right)\)
\(=3x^3+y^3+z^3\)
Ta có: \(M=x^3+y^3+z^3+x^3-y^3+z^3+x^3+y^3-z^3\)
⇒ \(M=\left(x^3+x^3+x^3\right)+\left(y^3-y^3+y^3\right)+\left(z^3+z^3-z^3\right)\)
\(M=3x^3+y^3+z^3\)
Bài 1: Bậc của đa thức là gì?
Bài 2:
Ta có: \(M=x^3+y^3+z^3+x^3-y^3+z^3+x^3+y^3-z^3\)
\(\Rightarrow M=\left(x^3+x^3+x^3\right)+\left(y^3-y^3+y^3\right)+\left(z^3+z^3-z^3\right)\)
\(\Rightarrow M=3x^3+y^3+z^3\)
Bài 1 :
a) 4x3 - \(\dfrac{2}{3}x\) + 5 - 2x + x3
= ( 4x3 + x3 ) - ( \(\dfrac{2}{3}x\) + 2x ) + 5
= 5x3 - \(\dfrac{8}{3}x\) + 5
\(\rightarrow\) Bậc của đa thức là 3
b) 5x2 + 11x3 - 3x3 + 8x3 - 3x2
= ( 5x2 - 3x2 ) + ( 11x3 - 3x3 + 8x3 )
= 2x2 + 16x3
\(\rightarrow\) Bậc của đa thức là 3
Bài 2 :
M = x3 + y3 + z3 + x3 - y3 + z3 + x3 + y3 - z3
M = ( x3 + x3 + x3 ) + ( y3 - y3 + y3 ) + ( z3 + z3 - z3 )
M = 3x3 + y3 + z3
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
\({y^3}{y^2}z = {y^5}z\)
\(\dfrac{1}{3}x{y^2}{x^3}z = \dfrac{1}{3}{x^4}{y^2}z\)
sai đề rồi nhé , đề phải là :
\(\frac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\frac{\left(x-y\right)^3+3xy.\left(x-y\right)+z^3+3xyz}{x^2+2xy+y^2+y^2+2yz+z^2+z^2-2xz+x^2}\)
\(=\frac{\left(x-y+z\right).\left[\left(x-y\right)^2-\left(x-y\right).z+z^2\right]+3xy.\left(x-y+z\right)}{2x^2+2y^2+2z^2+2xy+2yz-2xz}\)
\(=\frac{\left(x-y+z\right).\left(x^2-2xy+y^2-xz+yz+z^2+3xy\right)}{2.\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\frac{\left(x-y+z\right).\left(x^2+y^2+z^2+xy+yz-xz\right)}{2.\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\frac{x-y+z}{2}\)
a) Các biểu thức: \(\dfrac{1}{5}x{y^2}{z^3}; - \dfrac{3}{2}{x^4}{\rm{yx}}{{\rm{z}}^2}\) là đơn thức
b) Các biểu thức: \(2 - x + y; - 5{{\rm{x}}^2}y{z^3} + \dfrac{1}{3}x{y^2}z + x + 1\) là đa thức
1)
a) \(=3x^2\left(x^2-1\right)-\left(x^3-1\right)+x^8-3x^4+3x^2-1\)
\(=3x^4-3x^2-x^3+1+x^8-3x^4+3x^2-1=x^8-x^3\)
2)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)-6\left(x^2+5x\right)+45\)
\(=\left(x^2+5x\right)^2-6\left(x^2+5x\right)-36+45\)
\(=\left(x^2+5x\right)^2-6\left(x^2+5x\right)+9=\left(x^2+5x-3\right)^2\)
M = ( x\(^3\) + x\(^3\) + x\(^3\) ) + ( y\(^3\) - y\(^3\) + y\(^3\) ) + ( z\(^3\) + z3 - z\(^3\) )
= 3x\(^3\) + y\(^3\) + z\(^3\)