4) cho △ABC nhọn, đường cao BD, CE
a) c/m: B, C, D, E cùng thuộc 1 đường tròn
b) vẽ đường tròn tâm O đường kính AC cắt BD tại P. vẽ đường tròn tâm I đường kính AB cắt CE tại Q. c/m: △APQ cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy ngay do BD, CE là đường cao nên \(\widehat{BEC}=\widehat{BDC}=90^o\)
Xét tứ giác AEDC có \(\widehat{BEC}=\widehat{BDC}=90^o\) nên AEDC là tứ giác nội tiếp hay A, E, D, C cùng thuộc một đường tròn.
Đường tròn cần tìm là đường tròn đường kính BC, tức là tâm đường tròn là trung điểm J của BC, bán kính là JB.
b) Xét tam giác BEC và tam giác BHM có :
\(\widehat{BEC}=\widehat{BHM}=90^o\)
Góc B chung
\(\Rightarrow\Delta BEC\sim\Delta BHM\left(g-g\right)\)
\(\Rightarrow\frac{BE}{BH}=\frac{BC}{BM}\Rightarrow BC.BH=BE.BM\)
Ta có \(BK^2=BD^2=BH.BC=BE.EM\) mà \(KE\perp BM\Rightarrow\widehat{BKM}=90^o\)
Vậy MK là tiếp tuyến của đường tròn tâm B.
c)
Gọi F là giao điểm của CE với đường tròn tâm B.
Do \(BE\perp KF\)nên MB là trung trực của FK.
\(\Rightarrow\widehat{MFB}=\widehat{MKB}=90^o\Rightarrow\)tứ giác MFBH nội tiếp.
\(\Rightarrow\widehat{MHF}=\widehat{MBF}\) (Hai góc nội tiếp cùng chắn cung MF)
Ta cũng có MKHB nội tiếp nên \(\widehat{MHK}=\widehat{MBK}\)
Mà \(\widehat{MBF}=\widehat{MBK}\) nên HI là phân giác góc KHF.
Áp dụng tính chất tia phân giác ta có : \(\frac{IK}{IF}=\frac{HK}{HF}\)
Ta có \(HC\perp HI\) nên HC là tia phân giác ngoài của góc KHF.
\(\Rightarrow\frac{CK}{CF}=\frac{HK}{HF}\)
Vậy nên \(\frac{CK}{CF}=\frac{IK}{IF}\)
\(\Rightarrow\frac{CK}{CF+KF}=\frac{IK}{IF+IK}\Rightarrow\frac{CK}{\left(CE+EF\right)+\left(CE-KE\right)}=\frac{IK}{FK}\)
\(\Rightarrow\frac{CK}{2CE}=\frac{IK}{2EK}\Rightarrow CK.EK=CE.IK\)
a: Xét tứ giác BEFC có \(\widehat{BEC}=\widehat{BFC}=90^0\)
nên BEFC là tứ giác nội tiếp đường tròn đường kính BC
=>B,E,F,C cùng thuộc một đường tròn
tâm I là trung điểm của BC
b: Xét ΔABC có
BF,CE là các đường cao
BF cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
=>AM\(\perp\)BC
Xét (O) có
ΔAMD nội tiếp
AD là đường kính
Do đó: ΔAMD vuông tại M
=>AM\(\perp\)MD
Ta có: AM\(\perp\)BC
AM\(\perp\)MD
Do đó: BC//MD
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{ADC}\)
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
Ta có: \(\widehat{BAH}+\widehat{ABC}=90^0\)(AH\(\perp\)BC)
\(\widehat{ADC}+\widehat{CAD}=90^0\)(ΔACD vuông tại C)
mà \(\widehat{ABC}=\widehat{ADC}\)
nên \(\widehat{BAH}=\widehat{CAD}\)
=>\(\widehat{BAH}+\widehat{MAD}=\widehat{CAD}+\widehat{MAD}\)
=>\(\widehat{BAD}=\widehat{CAM}\)(1)
Xét (O) có
\(\widehat{BAD}\) là góc nội tiếp chắn cung BD
\(\widehat{BCD}\) là góc nội tiếp chắn cung BD
Do đó: \(\widehat{BAD}=\widehat{BCD}\left(2\right)\)
Xét (O) có
\(\widehat{CBM}\) là góc nội tiếp chắn cung CM
\(\widehat{CAM}\) là góc nội tiếp chắn cung CM
Do đó: \(\widehat{CBM}=\widehat{CAM}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{CBM}=\widehat{BCD}\)
Xét tứ giác BCDM có BC//DM
nên BCDM là hình thang
Hình thang BCDM có \(\widehat{CBM}=\widehat{BCD}\)
nên BCDM là hình thang cân
c: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BA\(\perp\)BD
mà CH\(\perp\)BA
nên CH//BD
Ta có: CD\(\perp\)CA
BH\(\perp\)AC
Do đó: BH//CD
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HD
=>H,I,D thẳng hàng
d: Kẻ tiếp tuyến Ax của (O)
Xét (O) có
\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\)
mà \(\widehat{ABC}=\widehat{AFE}\left(=180^0-\widehat{EFC}\right)\)
nên \(\widehat{xAC}=\widehat{AFE}\)
mà hai góc này là hai góc ở vị trí so le trong
nên EF//Ax
Ta có: Ax//EF
Ax\(\perp\)AD
Do đó: AD\(\perp\)EF tại K
a: Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại H
Do đó: AH⊥BC
a: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=90^0+90^0\)
=>ADHE là tứ giác nội tiếp đường tròn đường kính AH
=>ADHE nội tiếp (O), O là trung điểm của AH
b: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
=>BEDC là tứ giác nội tiếp đường tròn đường kính BC
=>BEDC nội tiếp (F)
Gọi giao của AH với BC là M
Xét ΔABC có
BD,CE là đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH vuông góc BC tại M
\(\widehat{OEF}=\widehat{OEC}+\widehat{FEC}\)
\(=\widehat{AOE}+\widehat{ECB}\)
\(=\widehat{AOE}+\widehat{EAO}=90^0\)
=>FE là tiếp tuyến của (O)
c: ΔDAB vuông tại D có DM là trung tuyến
nên DM=MA=MB
ΔDHC vuông tại D có DI là trung tuyến
nên IH=ID=IC và ΔDHC nội tiếp đường tròn (I)
\(\widehat{MDI}=\widehat{MDB}+\widehat{IDB}\)
\(=\widehat{MBD}+\widehat{IHD}\)
\(=\widehat{MBD}+\widehat{EHB}=90^0\)
=>MD là tiếp tuyến của (I)
a: Xét (O) có
ΔBDC nội tiếp đường tròn
BC là đường kính
DO đó:ΔBDC vuông tại D
Xét ΔBCA vuông tại B có BD là đường cao ứng với cạnh huyền AC
nên \(AB^2=AD\cdot AC\)
a: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=180^0\)
Do đó ADHE là tứ giác nội tiếp
a: Xét tứ giác BCDE có
\(\widehat{BEC}=\widehat{BDC}\left(=90^0\right)\)
Do đó: BCDE là tứ giác nội tiếp
hay B,C,D,E cùng thuộc 1 đường tròn
b: Xét (O) có
ΔAPC nội tiếp đường tròn
AC là đường kính
Do đó: ΔAPC vuông tại P
Xét (I) có
ΔAQB nội tiếp đường tròn
AB là đường kính
Do đó: ΔAQB vuông tại Q
Xét ΔAPC vuông tại P có PD là đường cao ứng với cạnh huyền AC
nên \(AP^2=AD\cdot AC\left(1\right)\)
Xét ΔAQB vuông tại Q có QE là đường cao ứng với cạnh huyền AB
nên \(AQ^2=AE\cdot AB\left(2\right)\)
Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{EAC}\) chung
Do đó: ΔADB\(\sim\)ΔAEC
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
hay \(AB\cdot AE=AD\cdot AC\left(3\right)\)
Từ (1), (2) và (3) suy ra AP=AQ
hay ΔAPQ cân tại A