Tìm số tự nhiên nhỏ nhất khi chia cho 8 dư 6, chia cho 12 dư 10, chia cho 15 dư 13
và chia hết cho 23
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Chia cho 8 dư 6 là 190;chia 12 dư 10 là 286;chia 15 dư 13 là 358 . 2)Số tự nhiên nhỏ nhất khi chia cho 3;4;5 có số dư theo thứ tự 1;3;1 là 4;7;6. Mình ko chắc đâu nha!!!
câu 1 sai đề đúng ko bạn
phải là cái này mới đúng :1)tìm số tự nhiên nhỏ nhất khi chia cho 8 dư 6;chia 12 dư 10;chia 15 dư 16 và chia hết cho 23
Gọi số phải tìm là A
Theo đề bài:
A chia 8 dư 6 => A+2 chia hêt cho 8 (khi trình bày thì cháu viết 3 cái chấm thẳng hàng nhé)
A chia 12 dư 10 => A+2 chia hết cho 12
A chia cho 15 dư 13 => A+2 chia hết cho 15
=> A+2 là bội số chung của {8; 12; 15}.
Bội số chung của {8;12;15} là: 120; 240; 360; 480; 600....
=> A có thể là những số sau: 118; 238; 358; 478; 598; ....
Do A chia hết cho 23 nên A = 598 (thỏa mãn số tự nhiên nhỏ nhất cần tìm).
Vậy số tự nhiên nhỏ nhất cần tìm là 598.
Gọi số cần tìm là x
Theo đề, ta có: \(x-6\in B\left(8\right);x-10\in B\left(12\right);x-13\in B\left(15\right);x\in B\left(23\right)\)
mà x nhỏ nhất
nên x=598
gọi stn cần tìm là x(x thuộc N)
x chia 8 dư 6=>x+2 chia hết cho 8
x chia 12 dư 10=>x+2 chia hết cho 12
x chia 15 dư 13=>x+2 chia hết cho 15
=>x+2 thuộc B(8,12,15)
8=2^3
12=2^2.3
15=3.5
=>BCNN(8,12,15)=2^3 . 3 . 5 =120
=>B(8,12,15)=0;120;240;360;480;600;720;...}
=>x+2=(8,12,15)=0;120;240;360;480;600;720;...}
=>x={-2;118;238;358;478;598;718;...}
mà x thuộc N;x chia hết cho 23
mà 598 chia hết cho 23
mà ta cần tìm x nhỏ nhất
=>x=598
Vậy stn nhỏ nhất cần tìm là 598
goi so can tim la a
a chia 8 du 6 => (a+2) chia het cho 8
a chia 12 du 10 => (a+2) chia het cho 12
a chia 15 du 13 => (a+2) chia het cho 15
=>(a+2) thuoc BC(8;12;15)
ta co :
8=2^3
12=2^2.4
15=3.5
=>BCNN(8;12;15)=B(120)={0;120;240;360;...}
=>BC(8;12;15)=B(120)={0;120;240;360;...}
=>(a+2 ) thuoc Ơ0;120;240;360;...}
=>a thuoc {118;238;358;...}
Trong cac so nay co cac so : {598;...} chia het cho 23
Ma a nho nhat =>a=598
Vay so can tim la 598
****
Gọi số tự nhiên cần tìm là a. Ta có :
a chia 8 dư 6 => (a + 2) chia hết cho 8
a chia 12 dư 10 => (a + 2) chia hết cho 12
a chia 15 dư 13 => (a + 2) chia hết cho 15
=> (a + 2) thuộc BC (8 ; 12 ; 15)
Ta lại có :
8 = 23
12 = 22 . 3
15 = 3.5
=> BCNN (8 ; 12 ; 15) = 23 . 3 . 5 = 120
=> BC (8 ; 12 ; 15) = B(120) = {0 ; 120 ; 240 ; 360 ; ....}
=> (a + 2) thuộc {0 ; 120 ; 240 ; 360;...}
=> a thuộc {118 ; 238 ; 358 ; ...}
Trong các số này có các số : { 598 ; ....} chia hết cho 23
Mà a nhỏ nhất
=> a = 598
Vậy số cần tìm là 598.
46
cho tớ vài **** để lên hạng 10 nhé ( cần 4 **** nữa )
Ta có : a chia 8 dư 6 ; a chia 12 dư 10 ; a chia 15 dư 13
=> a + 2 chia hết cho 8 ; 12 ; 15
=> a + 2 thuộc BC(8;12;15)
=> BCNN(8;12;15) = 120
=> BC (8;12;15) = {120;240;360;480;540;......}
=> a = {118;238;358;478;598;.......}
Vì a chia hết cho 23 => a = 598
Gọi số cần tìm là x
ta chú ý x+2 chia hết cho 8 chia hết cho 12 , chia hết cho 15
nên \(x+2\in BC\left(8,12,15\right)=120\)
mà x chia hết cho 23 nên : \(\Rightarrow x=598\)