K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\) 

==> a=b ; b=c ; c=a ========> a=b=c

6 tháng 1 2018

Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)
a=b=c=2017

6 tháng 1 2018

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\frac{a}{b}=1\Rightarrow a=b\)\(\frac{b}{c}=1\Rightarrow b=c\)\(\frac{c}{a}=1\Rightarrow c=a\)

Suy ra : a = b = c = 1

Nếu a = 2017 thì : b = c = 2017

11 tháng 8 2016

B = a/a+b + b/b+c + c/c+a

B > a/a+b+c + b/a+b+c + c/a+b+c

B > a+b+c/a+b+c

B > 1

14 tháng 3 2017

6 chac chan dung

14 tháng 3 2017

mình cũng ra 6 k cho mình đi đag âm nè bạn

7 tháng 6 2020

Trước tiên cần chứng minh với mọi m,n,p thuộc R và x,y,z>0 ta có

m^2/x +n^2/y +p^2/z >=(a+b+c)^2/x+y+z  (1)

 Dấu "=" xảy ra <=>m/x=n/y=p/z

Thật vậy m,n thuộc R,x,y>0 ta có 

m^2/x+n^2/y >=(m+n)^2/x+y  (2)

<=> (m^2y +n^2x)(x+y) >= xy(m+n)^2

sau đó khai triển ra ta được (nx-my)^2 >=0 (đúng)

Dấu "="xảy ra <=>m/x=n/y

Áp dụng BĐT (2) ta có

m^2/x +n^2/y +p^2/z >=(m+n)^2/x+y +p^2/z >= (m+n+p)^2/x+y+z

Dấu "=" xảy ra <=> m/x=n/y=p/z

Áp dụng BĐT (1) ta có

Q=a^2/a+b b^2/b+c c^2/c+a >= (a+b+c)^2/2(a+b+c)=3 (do a+b+c=6)

Dấu "=" xảy ra <=> a=b=c=2

19 tháng 11 2017

dùng bđt cauchy chứng minh biểu thức trên >=2 rồi chứng minh dấu = không xảy ra

24 tháng 7 2017

= nhau ban nhe

24 tháng 7 2017

Mình nghĩ chắc là:A=B