giải giúp em bài này với ạ: 3x^2+ax^2+x+a chia hết cho x+1. Em cảm ơn:(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=(x^2-2)(x^2+x-1)-x(x^3+x^2-3x-2)`
`=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x`
`=(x^4-x^4)+(x^3-x^3)+(3x^2-x^2-2x^2)+(2x-2x)+2`
`=2`
Ta có: \(\frac{x+2}{y+10}\)\(=\)\(\frac{1}{5}\)\(\Rightarrow\)\(5\left(x+2\right)=y+10\)(1)
\(y-3x=2\)\(\Rightarrow\)\(y+2=3x\) (2)
Thay (2) vào (1) ta có:
\(5\left(x+2\right)=\left(y+2\right)+8\)
\(5x+10=3x+8\)
\(5x-3x=8-10\)
\(2x=-2\)
\(x=-2:2\)
\(x=-1\)
Vậy: x=-1
Chúc bạn làm bài tốt!
\(\left(x^4-x^3-3x^2+x+2\right):\left(x^2-1\right)\)
\(=\left[x^2\left(x^2-1\right)-x\left(x^2-1\right)-2\left(x^2-1\right)\right]:\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-x-2\right):\left(x^2-1\right)=x^2-x-2\)
\(x^3-x^2y+3x-3y\)
\(=x^2\left(x-y\right)+3\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+3\right)\)
\(=x^2\left(x-y\right)+3\left(x-y\right)=\left(x^2+3\right)\left(x-y\right)\)
a: =>(3x+1)(3x-1)-(3x+1)(2x-3)=0
=>(3x+1)(3x-1-2x+3)=0
=>(3x+1)(x+2)=0
=>x=-1/3 hoặc x=-2
b: =>(3x+1)(6x+2)-(3x+1)(x-2)=0
=>(3x+1)(6x+2-x+2)=0
=>(3x+1)(5x+4)=0
=>x=-1/3 hoặc x=-4/5
\(\dfrac{3x^2+ax^2+x+a}{x+1}\)
\(=\dfrac{3x^2+3x+ax^2+ax-\left(a+2\right)x-\left(a+2\right)+a+2}{x+1}\)
\(=3x+ax-a-2+\dfrac{a+2}{x+1}\)
Để đây là phép chia hết thì a+2=0
hay a=-2