Câu 1 : the remainder in the division of \(\left(x^3-25x+1\right)by\left(x+4\right)\)
Câu 2 : the remainder in the division of \(\left(x^3-3x-16\right)by\left(x-4\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\Leftrightarrow x^2-2x+1-2\left|x-1\right|-3=0\)
\(\Leftrightarrow\left(\left|x-1\right|\right)^2-2\left| x-1\right|-3=0\)
\(\Leftrightarrow\left(\left|x-1\right|-3\right)\left(\left|x-1\right|+1\right)=0\)
=>x-1=3 hoặc x-1=-3
=>x=4 hoặc x=-2
Áp dụng định lý Bézout (Số dư trong phép chia đa thức f(x) cho nhị thức x-a bằng giá trị của f(a), ta được: số dư là 1
x^30+x^4-x^1975+1=(x-1).Q(x)+R ( R là số dư)
lấy x-1=0 thế x=1 vào 1^30+1^4-1^1975+1=2 . vẬY SỐ DƯ LÀ 2
Đa thức chia x-1 có ngiệm là 1 nên:
Thay x=1 vào đa thức chia ta có:
130+14-11975+1
=1+1-1+1
=2
Vậy số dư khi chia khi chia x30+x4-x1975+1 cho x-1 là 2