Lớp 6a có 52 học sinh , trong đó có 36 nữ và 16 nam . Hỏi có bao nhiêu cách chia tổ mà số nữ và số nam trong mỗi tổ đểu nhau . Cách chia nào cho số học sinh trong mỗi tổ là ít nhất , khi đó mỗi tổ có bao nhiêu nam , bao nhiêu nữ .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(36=3^2\cdot2^2;32=2^5\)
=>\(ƯCLN\left(36;32\right)=2^2=4\)
Để có thể chia đều 36 nam và 32 nữ vào các tổ thì số tổ phải là ước chung của 36 và 32
=>Số tổ sẽ là ước của 4
mà Ư(4)={1;2;4}
và số tổ nhiều hơn 1
nên có 2 cách chia
Để số học sinh trong mỗi tổ là ít nhất thì số tổ là nhiều nhất
=>Số tổ nhiều nhất là 4 tổ
Khi đó, số học sinh mỗi tổ là: \(\dfrac{36+32}{4}=17\left(bạn\right)\)
Gọi a là số cách chia tổ để số học sinh nam và nữ đều nhau
Ta có: a:30;a:18 => a thuộc ƯC(30;18)=Ư(6)={1;2;3;6}
Cách chia 6 tổ để mỗi tổ có học sinh ít nhất
Vậy số cách chia tổ để số học sinh nam và nữ đều nhau là 4 cách
Cách chia 6 tổ để mỗi tổ có học sinh ít nhất
mk k chắc nữa, Chúc bạn học tốt!^_^
Lời giải:
Giả sử có $n$ số tổ chia được sao cho số nữ và số nam trong tổ là như nhau.
Khi đó $n$ là ước chung của $24,18$.
$\Rightarrow n\in\left\{1; 2; 3; 6\right\}$
$\Rightarrow$ có $4$ cách chia tổ
Để số học sinh mỗi tổ ít nhất thì $n$ phải nhiều nhất, tức là $n=6$
Vậy chia thành 6 nhóm thì số học sinh ở mỗi tổ là ít nhất.
Khi đó, mỗi tổ có: $18:6=3$ (hs nam) và $24:6=4$ (hs nữ)
ƯCLN(24;18)=6
=>ƯC(24;18)={1;2;3;6}
=>Có 4 cách
Để số học sinh của mỗi tổ là ít nhất thì số tổ là nhiều nhất
=>Số tổ là 6 tổ
Khi đó, mỗi tổ có 4 nữ và 3 nam
ƯCLN(24;18)=6
ƯC(24;18)={1;2;3;6}
Có 4 cách
Để số học sinh của mỗi tổ là ít nhất thì số tổ là nhiều nhất
vậySố tổ là 6 tổ
Khi đó, mỗi tổ có 4 nữ và 3 nam
Gọi số tổ của lp đó là a ( a thuộc N* )
=> a là ƯC(16;20)
Ta có
16 = 24
20 = 22. 5
=> ƯCLN ( 16;20) = 22 = 4
=> ƯC (16;20) = { 1 ; 2 ; 4 }
Vậy có 3 cách chia tổ
Chia số học sinh của lp đó thành 4 tổ thì mỗi tổ sẽ có số học sinh ít nhất
Bài 1:
Gọi số nhóm chia được là a (a thuộc N*)
Theo bài ra ta có:
18 chia hết cho a ; 24 chia hết cho a
=> a thuộc ƯC(18,24)
Ta có :
18= (1;2;3;6;9;18) ( ngoặc ( ở đây là ngoặc nhọn)
24 = (1;2;3;4;6;8;12;24)
=> ƯC(18,24) = ( 1;2;3;6)
Vậy có thể chia nhiều nhất thành 6 nhóm.
Khi đó, mỗi nhóm có:
Số bạn nam là:
18 : 6 = 3 (bạn)
Số bạn nữ là:
24 : 6 = 4 (bạn)
Bài 2:
Gỉai
Gọi a là số tổ dự định chia (a thuộcN)và a ít nhất
Theo bài ra ta có:
28 chia hết cho a;24 chia hết cho a
Do đó a là ƯC (28;24)
28=2mũ2.7
24=2mũ3.3
ƯCLN(28:24)=2mũ2=4
Suy ra ƯC(24:28)=Ư(4)=(1:2:4)
Vậy có 3 cách chia số nam và nữ vào các tổ đều nhau.
Chia cho lớp thành 4 tổ thì mỗi tổ có số học sinh ít nhất
Gọi số tổ là a ( a ∈ N* )
Theo đề ra , ta có :
27 ⋮ a và 18⋮a
⇒a ∈ ƯC(27,18)⇒a ∈ ƯC(27,18)
27 = 33
18 = 2 . 32
ƯCLN(24,18)=2.3=6ƯCLN(24,18)= 32 = 9
ƯC( 27,18 ) =Ư( 9 )={ 1;3;9 }ƯC(27,18)=Ư(9)={1;3;9}
Vậy có tất cả 3 cách chia .
Vì : số học sinh mỗi tổ ít nhất
⇒a=ƯCLN(27,18)
Mà : ƯCLN(27,18) = 9 ⇒a = 9 ƯCLN(27,18) ⇒a = 9
Vậy chia 9 thì số học sinh ở mỗi tổ là ít nhất .