K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

Gỉa sử d là ước chung của \(2n+1\)\(2n^2+1\)

Ta được : \(\left\{{}\begin{matrix}2n+1⋮d\\2n^2-1⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n^2+n⋮d\\2n^2-1⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1⋮d\\2n+1⋮d\end{matrix}\right.\)

\(\Rightarrow d=1\)

Vậy phân số đã tối giản .

AH
Akai Haruma
Giáo viên
5 tháng 2

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

AH
Akai Haruma
Giáo viên
5 tháng 2

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

5 tháng 6 2019

Xét\(12n+1=12n+24-23=12\left(n+2\right)-23\)

\(\Rightarrow\frac{12n+1}{2n\left(n+2\right)}=\frac{12\left(n+2\right)-23}{2n\left(n+2\right)}=\frac{12\left(n+2\right)}{2n\left(n+2\right)}-\frac{23}{2n\left(n+2\right)}=\frac{6}{n}-\frac{23}{2n\left(n+2\right)}\)

Xét\(\frac{23}{2n\left(n+2\right)}\)ta có:

\(2n\left(n+2\right)⋮2\)

=> \(2n\left(n+2\right)\)là số chẵn

mà 23 là số lẻ

\(\Rightarrow\frac{23}{2n\left(n+2\right)}\)Tối giản

\(\Rightarrow\frac{6}{n}-\frac{23}{2n\left(n+2\right)}\)tối giản

Vậy \(\frac{12n+1}{2n\left(n+2\right)}\)Tối giản (ĐPCM)

28 tháng 1 2022

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

28 tháng 1 2022

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

\(\frac{2n+2}{2n+1}=\frac{2n+1+1}{2n+1}=\frac{1}{2n+1}+1\)

Để \(\frac{1}{2n+1}\)Nguyên=> 1\(⋮\)2n+1

=> 2n+1\(\in\)Ư(1)={1,-1}

... Bn tự đưa ra 2 trường hợp nhé!

28 tháng 2 2022

cíu batngo

Gọi d=UCLN(2n+1;3n+2)

\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+2\right)⋮d\)

\(\Leftrightarrow-1⋮d\)

=>d=1

=>UCLN(2n+1;3n+2)=1

=>2n+1/3n+2 là phân số tối giản

8 tháng 3 2018

Gọi d là USC của (n+1; 2n+3)

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\) <=> \(\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\)<=> \(\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

<=> [(2n+3)-(2n+2)]\(⋮\)d <=> 1\(⋮\)d => d=1

Vậy USCLN của (n+1; 2n+3) là 1 => số có dạng \(\frac{n+1}{2n+3}\)là phân số tối giản