K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét ΔCDH vuông tại D và ΔCEA vuông tại E có

góc DCH chung

Do đó: ΔCDH\(\sim\)ΔCEA
Suy ra: CD/CE=CH/CA

hay \(CD\cdot CA=CH\cdot CE\)

Xét ΔBEH vuông tại E và ΔBDA vuông tại D có

góc EBH chung

Do đó: ΔBEH\(\sim\)ΔBDA
SUy ra: BE/BD=BH/BA

hay \(BE\cdot BA=BH\cdot BD\)

Xét ΔBIH vuông tại I và ΔBDC vuông tại D có

góc DBC chung

Do đó: ΔBIH\(\sim\)ΔBDC

Suy ra: BI/BD=BH/BC

hay \(BD\cdot BH=BI\cdot BC\)

hay \(BE\cdot BA=BI\cdot BC\)

Xét ΔCHI vuông tại I và ΔCBE vuông tại E có

góc BCE chung

Do đó: ΔCHI\(\sim\)ΔCBE

Suy ra: CH/CB=CI/CE

hay \(CH\cdot CE=CI\cdot CB\)

=>\(CI\cdot CB=CD\cdot CA\)

\(CD\cdot CA+BE\cdot BA=BI\cdot BC+CI\cdot BC=BC^2\)

a: Xét tứ giác ADHE có \(\widehat{ADH}+\widehat{AEH}=180^0\)

nên ADHE là tứ giác nội tiếp

Xét tứ giác ADIB có \(\widehat{ADB}=\widehat{AIB}=90^0\)

nên ADIB là tứ giác nội tiếp

4 tháng 2 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

24 tháng 1 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Tính BE.BA + CD.CA

Chứng minh tương tự câu b, CD.CA = CI.CB

Từ đó BE.BA + CD.CA = BI.BC + CI.CB

= (BI + CI).BC = BC.BC = B C 2 = 16 2  = 256

19 tháng 7 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

a: góc BEC=góc BDC=1/2*180=90 độ

=>CE vuông góc AB, BD vuông góc AC

góc AEH+góc ADH=180 độ

=>AEHD nội tiếp

b: góc EFH=góc ABD

góc DFH=góc ACE
mà góc ABD=góc ACE

nên góc EFH=góc DFH

=>FH là phân giác của góc EFD

17 tháng 2 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Chứng minh AI BC

Ta có ∠BEC = BDC = 90 0 (hai góc nội tiếp chắn nửa đườn tròn)

a: góc BEH+góc BKH=180 độ

=>BEHK nội tiếp

=>góc EBH=góc EKH

góc BKA=góc BDA=90 độ

=>ABKD nội tiếp

=>góc EBH=góc AKD=góc EKH

=>KA là phân giác của góc EKD

b: góc AIO=góc AJO=góc AKO=90 độ

=>I,J,K,A,O cùng thuộc đường tròn đường kính OA

sđ cung AI=sđ cung AJ

=>góc AKI=góc AJI

=>góc AKE+góc IKE=góc AKD+góc DKJ

=>góc IKE=góc DKJ

c: 

a: Xét (O) có 

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét (O) có 

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét ΔABC có

BD là đường cao

CE là đường cao

BD cắt CE tại H

Do đó: AH⊥BC