Hai xe đồng thời xuất phát từ điểm A chuyển động thẳng đều và điểm B, đoạn đường AB có độ dài là L. Xe thứ nhất trong nửa đầu đoạn đường AB đi với vận tốc m, nửa còn lại đi với vận tốc n. Xe thứ hai trong nửa đầu của tổng thời gian đi với vận tốc m, nửa còn lại đi với vận tốc n. Biết m khác n. Hỏi xe nào đến B trước và trước bao lâu ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo đề bài ta có \(v2=\dfrac{v1}{2}\)
thời gian xe thứ nhất đi được nữa quãng đường đầu
\(t1=\dfrac{s1}{v1}=\dfrac{\dfrac{1}{2}s}{\dfrac{2v1}{2}}=\dfrac{s}{2v1}=\dfrac{4}{2v1}\)
thời gian xe thứ nhất đi được nữa quãng đường sau
\(t2=\dfrac{s2}{v2}=\dfrac{\dfrac{1}{2}s}{\dfrac{1}{2}v1}=\dfrac{s}{v1}=\dfrac{4}{v1}\)
ta có \(t1+t2=t\)
\(\dfrac{4}{2v1}+\dfrac{4}{v1}=\dfrac{1}{6}\)
\(\dfrac{12}{6v1}+\dfrac{24}{6v1}=\dfrac{v1}{6v1}\)
\(v1=\dfrac{36km}{h}\) vậy giả thiết \(v2=\dfrac{v1}{2}=>v2=\dfrac{36}{2}=\dfrac{18km}{h}\)
chỉ cần tìm vtb1 và vtb2 là tính được cả ý dưới
a đối với xe thứ nhất:, \(=>t1=\dfrac{\dfrac{1}{2}S}{v1}=\dfrac{\dfrac{1}{2}S}{40}=\dfrac{S}{80}\left(h\right)\)
\(=>t2=\dfrac{\dfrac{1}{2}S}{v2}=\dfrac{\dfrac{1}{2}S}{60}=\dfrac{S}{120}\left(h\right)\)
\(=>vtb1=\dfrac{\dfrac{1}{2}S+\dfrac{1}{2}S}{t1+t2}=\dfrac{S}{\dfrac{S}{80}+\dfrac{S}{120}}=\dfrac{S}{\dfrac{200S}{9600}}=48km/h\)
vậy vận tốc trung bình xe thứ nhất là 48km/h
* với xe thứ hai \(=>S1=\dfrac{1}{2}t.v1=\dfrac{1}{2}t.40=20t\left(km\right)\)
\(=>S2=\dfrac{1}{2}t.v2=\dfrac{1}{2}t.60=30t\left(km\right)\)
\(=>S1+S2=S\) \(=vtb2.t\)
\(=>50t=vtb2.t=>vtb2=\dfrac{50t}{t}=50km/h\)
b, vì \(vtb1< vtb2\left(48< 50\right)\)
nên xe thứ hai đến B trước xe thứ nhất
c, khi xe 2 tới Bthì xe nhất còn cách B
\(240-S3=240-[240-\left(\dfrac{240}{80}+\dfrac{240}{240}.60\right)]=63km\)