K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2021

a, (2x + 1)(y – 5) = 12

Theo đề bài ta có 2x+1)(y-5)=12=>2x+1;y-5 thuộc Ư(12)={1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}Mà 2x+1 là số nguyên lẻ=>2x+1 thuộc{1  ;  -1;3;-3}=>y-5    thuộc{12;-12;4;-4}=>x thuộc {0;-1;1;-2}=>y thuộc {17;4;9;1}

 

 

 

7 tháng 2 2022

a) \(\left(x+1\right)\left(y+4\right)=7\).

-Vì \(x,y\in Z\) nên ta có thể viết:

\(\left(x+1\right)\left(y+4\right)=1.7\) hay \(\left(x+1\right)\left(y+4\right)=7.1\) hay \(\left(x+1\right)\left(y+4\right)=\left(-1\right).\left(-7\right)\) hay \(\left(x+1\right)\left(y+4\right)=\left(-7\right).\left(-1\right)\)

+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=1.7\):

\(\Rightarrow x+1=1\) và \(y+4=7\) 

\(\Rightarrow x=0\left(tmđk\right)\) và \(y=3\left(tmđk\right)\).

+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=7.1\):

\(\Rightarrow x+1=7\) và \(y+4=1\) 

\(\Rightarrow x=6\left(tmđk\right)\) và \(y=-3\left(tmđk\right)\).

+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=\left(-1\right).\left(-7\right)\):

\(\Rightarrow x+1=-1\) và \(y+4=-7\)

\(\Rightarrow x=-2\left(tmđk\right)\) và \(y=-11\left(tmđk\right)\).

+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=\left(-7\right).\left(-1\right)\):

\(\Rightarrow x+1=-7\) và \(y+4=-1\)

\(\Rightarrow x=-8\left(tmđk\right)\) và \(y=-5\left(tmđk\right)\).

b) \(xy+2x-3y=-1\)

\(\Rightarrow xy+2x-3y+1=0\)

\(\Rightarrow y\left(x-3\right)=-2x-1\)

\(\Rightarrow y=-\dfrac{2x+1}{x-3}=\dfrac{2\left(x-3\right)-5}{x-3}=2-\dfrac{5}{x-3}\)

-Vì \(y\in Z\) \(\Rightarrow5⋮\left(x-3\right)\).

\(\Rightarrow\left(x-3\right)\inƯ\left(5\right)\)

\(\Rightarrow x-3\in\left\{1;-1;5;-5\right\}\)

\(\Rightarrow x\in\left\{4;2;8;-2\right\}\) (đều thỏa mãn điều kiện).

+Với \(x=4\) thì \(y=\dfrac{5}{4-3}=5\) (tmđk).

+Với \(x=2\) thì \(y=\dfrac{5}{2-3}=-5\) (tmđk).

+Với \(x=8\) thì \(y=\dfrac{5}{8-3}=1\) (tmđk)

+Với \(x=-2\) thì \(y=\dfrac{5}{-2-3}=-1\) (tmđk).

 

Bài 2: 

a: Ta có: \(2^{x+1}\cdot3^y=12^x\)

\(\Leftrightarrow2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

5 tháng 12 2021

Tham khảo:

a)

( 2x + 1 ) . ( y - 3 ) = 12

Vì 2x +1 là số lẻ.

Do ( 2x + 1 ) . ( y - 3) = 12

=> 2x + 1   :  y - 3 thuộc Ư ( 12) = { 1 ; 2 ; 3 ; 4 ; 6 ; 12 }

=> 2 x +1 = 1 => x= 0 

hoặc y - 3 = 12 => y = 15

=> 2x + 1 = 3 => x = 2

hoặc y - 3 = 4 => y = 7

=> 2x + 1 = 2 ( L)

VẬY ( x ; y) = { ( 0 ; 15 ) ; ( 2 ; 7) }

5 tháng 12 2021

a, (2x + 1) (y - 3) = 12
=> y-3 ϵ Ư(12) = {+-1; +-2; +-3; +-4; +-6; +-12}
=> Tìm các giá trị của y (tự làm:>)
Ta có bảng sau (tự làm nốt:>)
2x+1
y-3
x
y
=> (x; y) =...
b, Ý này tương tự ý trên
còn nếu bạn muốn mình giải chi tiết thì bảo nha:>

a: Ta có: 2x=5y

nên \(\dfrac{x}{5}=\dfrac{y}{2}\)

hay \(\dfrac{x}{5}=\dfrac{2y}{4}\)

mà x-2y=-12

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{5}=\dfrac{2y}{4}=\dfrac{x-2y}{5-4}=-12\)

Do đó: x=-60; y=-24

b: Ta có: 2x=3y=4z

nên \(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}\)

mà x+y-z=21

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+y-z}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}=\dfrac{21}{\dfrac{7}{12}}=36\)

Do đó: x=18; y=12; z=9

30 tháng 8 2021

b) 2x=3y=4z, ta có: \(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)

Áp dụng tỉ số của dãy số bằng nhau, ta có: \(\dfrac{x+y-z}{6+4-3}=\dfrac{21}{7}=3\)

\(\dfrac{x}{6}=3\Rightarrow x=18\)

\(\dfrac{y}{4}=3\Rightarrow y=12\)

\(\dfrac{z}{3}=3\Rightarrow z=9\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

a. Thay $x=y$ vào điều kiện ban đầu thì:
$x+x=10$

$2x=10$

$x=5$

$\Rightarrow y=x=5$

Vậy $(x,y)=(5,5)$

b. Thay $x=y$ vào điều kiện đầu:
$2x+3x=180$

$5x=180$

$x=36$

$y=x=36$

Vậy $(x,y)=(36,36)$

c. Thay $y=2x$ vào điều kiện đầu thì:

$3x+5.2x=13$

$13x=13$

$x=1$

$y=2x=2$

Vậy $(x,y)=(1,2)$

 

a) Ta có: x=y

mà x+y=10

nên \(x=y=\dfrac{10}{2}=5\)

b) Ta có: \(\left\{{}\begin{matrix}2x+3y=180\\x=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y+3y=180\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=180\\x=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=36\\x=36\end{matrix}\right.\)

c) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+10x=13\\y=2x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}13x=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

25 tháng 12 2021

a)(x+1)(y-2)=3

x+1;y-2 thuộc Ư(3){1;-1;3;-3}

ta có bảng sau :

x-11-13-3
x204-2
y-21-13-3
y315-1

vậy cặp x;y thuộc {(2;3);(0;1);(4;5);(-2;-1)}
 

7 tháng 8 2023

a) Ta có: \(3x-y=13\) và \(2x-4y=60\)

Mà: \(2\left(x+2y\right)=60\Rightarrow x+2y=30\) (1)

Và: \(3x-y=13\Rightarrow6x-2y=26\) (2) 

Cộng (1) với (2) theo vế ta có:

\(\left(x+6x\right)+\left(-2y+2y\right)=30+26\)

\(\Rightarrow7x=56\)

\(\Rightarrow x=8\)

Ta tìm được y:

\(8+2y=30\)

\(\Rightarrow2y=22\)

\(\Rightarrow y=11\)

7 tháng 8 2023

Giúp mình với nhé! Mình đang cần

19 tháng 7 2021

a, Ta có : 

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)

\(\Rightarrow x=11;y=17;z=23\)

b, Đặt \(\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\Rightarrow xyz=810\)

\(\Rightarrow2k.3k.5k=810\Leftrightarrow30k^3=810\Leftrightarrow k^3=27\Leftrightarrow k=3\)

\(\Rightarrow x=6;y=9;z=15\)

19 tháng 7 2021

a) Ta có: \(\dfrac{x-1}{2}=\dfrac{2x-2}{4};\dfrac{y-2}{3}=\dfrac{3y-6}{9};\dfrac{z-3}{4}\)

Áp dụng t/c dtsbn:

\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{4+9-4}=5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=5\\\dfrac{y-2}{3}=5\\\dfrac{z-3}{4}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=12\end{matrix}\right.\)

b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

xyz = 810

=> 2k.3k.5k = 810

=> k = 3

\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=9\\z=15\end{matrix}\right.\)