\(6,5-\frac{4}{9}:\)/\(\frac{x}{4}+\frac{1}{3}\)/\(=2\)
Dạ làm hộ em bài này với ạ !! EM c=Cảm tạ rất nhiều ạ !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(11\frac{1}{4}-\left(2\frac{5}{7}+5\frac{1}{4}\right)\)
\(=\frac{45}{4}-\left(\frac{19}{7}+\frac{21}{4}\right)\)
\(=\frac{45}{4}-\left(\frac{76}{28}+\frac{147}{28}\right)\)
\(=\frac{45}{4}-\frac{223}{28}\)
\(=\frac{315}{28}-\frac{223}{28}\)
\(=\frac{23}{7}\)
b) \(\left(8\frac{5}{11}+3\frac{5}{8}\right)-3\frac{5}{11}\)
\(=\left(\frac{93}{11}+\frac{29}{8}\right)-\frac{38}{11}\)
\(=\left(\frac{744}{88}+\frac{319}{88}\right)-\frac{38}{11}\)
\(=\frac{1063}{88}-\frac{38}{11}=\frac{1063}{88}-\frac{304}{88}\)
\(=\frac{69}{8}\)
a/
\(VT\ge\frac{\frac{1}{2}\left(a+b\right)^2}{a+b}+\frac{\frac{1}{2}\left(b+c\right)^2}{b+c}+\frac{\frac{1}{2}\left(c+a\right)^2}{c+a}=a+b+c\ge3\sqrt[3]{abc}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
b/ Ta có: \(x^4+y^4\ge\frac{1}{2}\left(x^2+y^2\right)\left(y^2+y^2\right)\ge xy\left(x^2+y^2\right)\)
\(\Rightarrow VT\le\frac{1}{a+bc\left(b^2+c^2\right)}+\frac{1}{b+ca\left(a^2+c^2\right)}+\frac{1}{c+ab\left(a^2+b^2\right)}\)
\(VT\le\frac{1}{a+\frac{1}{a}\left(b^2+c^2\right)}+\frac{1}{b+\frac{1}{b}\left(a^2+c^2\right)}+\frac{1}{c+\frac{1}{c}\left(a^2+b^2\right)}\)
\(VT\le\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}=\frac{a+b+c}{a^2+b^2+c^2}\)
\(VT\le\frac{a+b+c}{\frac{1}{3}\left(a+b+c\right)^2}=\frac{3}{a+b+c}\le\frac{3}{3\sqrt[3]{abc}}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Sửa đề: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{3}{a+b+c}\ge4\)
\(\Leftrightarrow\frac{a^2c+b^2a+c^2b}{abc}+\frac{3}{a+b+c}\ge4\)
\(\Leftrightarrow P=a^2c+b^2a+c^2b+\frac{3}{a+b+c}\ge4\)
Ta có:
\(a^2c+a^2c+b^2a\ge3\sqrt[3]{a^3.\left(abc\right)^2}=3a\)
\(b^2a+b^2a+c^2b\ge3\sqrt[3]{b^3\left(abc\right)^2}=3b\)
\(c^2b+c^2b+a^2c\ge3\sqrt[3]{c^3\left(abc\right)^2}=3c\)
Cộng vế với vế: \(a^2c+b^2a+c^2b\ge a+b+c\)
\(\Rightarrow P\ge a+b+c+\frac{3}{a+b+c}=\frac{a+b+c}{3}+\frac{3}{a+b+c}+\frac{2}{3}\left(a+b+c\right)\)
\(\Rightarrow P\ge2\sqrt{\frac{3\left(a+b+c\right)}{3\left(a+b+c\right)}}+\frac{2}{3}.3\sqrt[3]{abc}=4\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x+y+z}{x\left(y+z\right)}=\frac{1}{2}\\\frac{x+y+z}{y\left(z+x\right)}=\frac{1}{3}\\\frac{x+y+z}{z\left(x+y\right)}=\frac{1}{4}\end{matrix}\right.\) lần lượt chia vế cho vế ta được hệ:
\(\left\{{}\begin{matrix}\frac{y\left(z+x\right)}{x\left(y+z\right)}=\frac{3}{2}\\\frac{z\left(x+y\right)}{x\left(y+z\right)}=2\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\yz=2xy+xz\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\3yz=6xy+3zx\end{matrix}\right.\)
\(\Rightarrow yz=5xy\Rightarrow z=5x\)
Thế vào \(yz=2xy+zx\Rightarrow5xy=2xy+5x^2\)
\(\Leftrightarrow3xy=5x^2\Rightarrow y=\frac{5x}{3}\)
Thế vào pt đầu: \(\frac{1}{x}+\frac{1}{\frac{5x}{3}+5x}=\frac{1}{2}\Rightarrow\frac{23}{20x}=\frac{1}{2}\Rightarrow x=\frac{23}{10}\)
\(\Rightarrow y=\frac{23}{6};z=\frac{23}{2}\)
Điều kiện \(\hept{\begin{cases}x\ne0\\3x^2-x-4\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{4}{3}\end{cases}}}\)
Đặt \(\frac{3x^2-x-4}{x}=a\)thì ta có
\(PT\Leftrightarrow a+\frac{9}{a}=6\)
\(\Leftrightarrow a^2-6a+9=0\)
\(\Leftrightarrow\left(a-3\right)^2=0\)
\(\Leftrightarrow a=3\)
\(\Leftrightarrow\frac{3x^2-x-4}{x}=3\)
\(\Leftrightarrow3x^2-4x-4=0\)
\(\Leftrightarrow\left(3x^2-6x\right)+\left(2x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}\)
\(A=\left(\frac{x^2+x+1}{x}+\frac{x+2}{x}-\frac{2-x}{x}\right)\frac{x}{x+1}=\frac{x^2+3x+1}{x+1}\)
@hieu nguyen Em có nhân chéo hai vế và khai triển ra nhưng cũng không ra cái gì ạ.
Cs phải cái đề như này ko e : 6,5 - 4/9 : | x/4 + 1/3 | = 2 ( dấu ":" dấu chia )