K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

tìmn ez

a)n 1la uoccua 3

b)uoc cua n 7

20 tháng 1 2018

Ta có: a2-(a-1)(a+1)

= a2-(a2-a+a-1)

= a2-a2+a-a+1

=1

Vậy a2-(a-1)(a+1)=1 (đpcm)

18 tháng 2 2020

86 vì ta học lớp 9

18 tháng 2 2020

Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)

\(=a\left(b^2c^2-b^2-c^2+1\right)+b\left(a^2c^2-a^2-c^2+1\right)\)

\(+c\left(a^2b^2-a^2-b^2+1\right)\)

\(=ab^2c^2-ab^2-ac^2+a+ba^2c^2-a^2b-bc^2+b\)

\(+ca^2b^2-a^2c-b^2c+c\)

\(=\left(ab^2c^2+ba^2c^2+ca^2b^2\right)+\left(a+b+c\right)\)

\(-\left(ab^2+ac^2+a^2b+bc^2+a^2c+b^2c\right)\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)\)\(-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(=abc\left(bc+ac+ab\right)+abc+3abc\)\(-abc\left(ab+bc+ca\right)=4abc\)

Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)(đpcm)

NV
14 tháng 1 2024

Ta có:

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\ge\dfrac{4}{\dfrac{a^2+1}{2}+b^2+1+\dfrac{c^2+1}{2}}=\dfrac{8}{b^2+7}\)

Tương tự

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{8}{a^2+7}\)

\(\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{8}{c^2+7}\)

Cộng vế:

\(2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{8}{a^2+7}+\dfrac{8}{b^2+7}+\dfrac{8}{c^2+7}\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{4}{a^2+7}+\dfrac{4}{b^2+7}+\dfrac{4}{c^2+7}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
18 tháng 12 2020

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với 0, không mất tính tổng quát, giả sử đó là a và b

\(\Rightarrow ab\ge0\)

Mặt khác do \(c\le1\Rightarrow\left\{{}\begin{matrix}1-c^2\ge0\\1-c\ge0\end{matrix}\right.\)

\(\Rightarrow2ab\left(1-c\right)+1-c^2\ge0\)

\(\Leftrightarrow2ab+1\ge2abc+c^2\)

\(\Leftrightarrow a^2b^2+2ab+1\ge a^2b^2+2abc+c^2\)

\(\Leftrightarrow\left(ab+c\right)^2\le\left(1+ab\right)^2\le\left(1+a^2\right)\left(1+b^2\right)\) (1)

Từ giả thiết:

\(a^2+b^2+c^2\le1+2abc\Leftrightarrow a^2b^2-2abc+c^2\le1-a^2-b^2+a^2b^2\)

\(\Leftrightarrow\left(ab-c\right)^2\le\left(1-a^2\right)\left(1-b^2\right)\) (2)

Nhân vế với vế (1) và (2):

\(\left(ab+c\right)^2\left(ab-c\right)^2\le\left(1+a^2\right)\left(1+b^2\right)\left(1-a^2\right)\left(1-b^2\right)\)

\(\Leftrightarrow1+2a^2b^2c^2\ge a^4+b^4+c^4\) (đpcm)

Dấu "=" xảy ra khi 1 số bằng 1 và 2 số bằng nhau

3 tháng 7 2019

a) VT = (a - 1)(a - 2) + (a - 3)(a + 4) - (2a2 + 5a - 34)

         = a2 - 2a - a + 2 + a2 + 4a - 3a - 12  - 2a2 - 5a + 34

       = (a2 + a2 - 2a2) - (2a + a - 4a + 3a + 5a) + (2 - 12 + 34)

        =  -7a + 24

=> VT = VP

=> đpcm

b) VT = (a - b)(a2 + ab + b2) - (a + b)(a2 - ab + b2)

         = (a3 - b3) - (a3 + b3)

         = a3 - b3 - a3 - b3

           = -2b

=> VT = VP

=> Đpcm

Câu b bn xem đề lại (a + b)(a2 - ab + b2) ko phải là (a + b)(a2 - ab - b2)

14 tháng 8 2022

chịu

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

Giả sử $(a^2+b^2, ab)>1$. Khi đó, gọi $p$ là ước nguyên tố lớn nhất của $(a^2+b^2,ab)$

$\Rightarrow a^2+b^2\vdots p; ab\vdots p$

Vì $ab\vdots p\Rightarrow a\vdots p$ hoặc $b\vdots p$

Nếu $a\vdots p$. Kết hợp $a^2+b^2\vdots p\Rightarrow b^2\vdots p$

$\Rightarrow b\vdots p$

$\Rightarrow p=ƯC(a,b)$ . Mà $(a,b)=1$ nên vô lý 

Tương tự nếu $b\vdots p$
Vậy điều giả sử là sai. Tức là $(a^2+b^2, ab)=1$

8 tháng 1 2019

Giả sử 100 số đó đôi một khác nhau

Không mất tính tổng quát giả sử \(0< a_1< a_2< a_3< ...< a_{100}\)

Vậy \(a_1\ge1;a_2\ge2;....;a_{100}\ge100\)suy ra \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)(99 phân số \(\frac{1}{2}\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< \frac{1}{2}.\left(2+99\right)=\frac{1}{2}.101=\frac{101}{2}\)trái với giả thiết.

Vì vậy điều giả sử sai, ta có điều phải chứng minh

9 tháng 1 2019

cảm ơn bạn