Find the integer solution of the equation \(x^2+xy+y^2=x^2y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=1 vào pt, ta có: \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=-5\left(1\right)\)
vì vai trò của a,b,c là như nhau, giả sử:\(a>b>c\Rightarrow a+1>b+1>c+1\left(2\right)\)
vì a,b,c là số nguyên nên a+1,b+1,c+1 cũng là số nguyên (3)
từ (1),(2),(3)\(\Rightarrow\hept{\begin{cases}a+1=5\\b+1=1\\c+1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}a=4\\b=0\\c=-2\end{cases}}}\)
4x2+y2+2xy=4x+4y
=>(x2+2xy+y2)+3x2+y2-4x-4y=0
=> (x+y)2+3\(\left(x^2-\dfrac{4}{3}x\right)+\left(y^2-4y\right)=0\)
=> (x+y)2+3\(\left(x^2-2.\dfrac{4}{6}+\dfrac{16}{36}-\dfrac{16}{36}\right)+\left(y^2-4y+4\right)-4=0\)
=> (x+y)2+3\(\left(x-\dfrac{4}{6}\right)^2-\dfrac{4}{3}+\left(y-2\right)^2-4=0\)
=> (x+y)2+3\(\left(x-\dfrac{4}{6}\right)^2+\left(y-2\right)^2=\dfrac{16}{3}\)
x2+xy+y2=x2y2
=> x2+2xy+y2=x2y2-xy
=> (x+y)2=xy(xy+1)
Vi (x+y)2 chinh phuong , nen xy(xy+1) cung chinh phuong
Vay xy=xy+1 hoac xy=0
TH1 xy=xy+1 => 0=1 ( vo ly)
TH2 xy=0 => xy(xy+1)=0 => x+y=0 => x=y=0