tìm số nguyên tố a, biết rằng 4.a + 11 là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay hướng dẫn tiếp phần b nhé:
Giả sử cả 3 số p;q;r đều không chia hết cho 3 thế thì p2;q2;r2 chia cho 3 chỉ dư 1 ( vì p;q;r nguyên tố)
Suy ra: p2 + q2 + r2 chia hết cho 3 mà p2 + q2 + r2 >3 suy ra p2 + q2 + r2 là hợp số ( mâu thuẫn đề bài).
Vậy điều giả sử là sai suy ra trong 3 số tồn tại ít nhất một số chia hết cho 3
Không mất tính tổng quat giả sử p<q<r\(\Rightarrow\)p chia hết cho 3 mà p là số nguyên tố suy ra p = 3
Lại có: p;q;r là 3 số nguyên tố liên tiếp nên q = 5; r=7
Vậy (p;q;r) = (3;5;7) và các hoán vị
b, Giả sử 3 số nguyên tố p, q, r đều không chia hết cho 3 mà một số chính phương chia hết cho 3 hoặc chia 3 dư 1
Nếu p^2, q^2, r^2 chia hết cho 3 suy ra p^2 + q^2 + r^2 chia hết cho 3 ( là hợp số, loại )
Nếu p^2, q^2, r^2 cùng chia 3 dư 1 suy ra p^2 + q^2 + r^2 chia hết cho 3 ( loại )
Nếu trong 3 số có 1 số chia hết cho 3 suy ra p^2 + q^2 + r^2 chia 3 dư 2 ( 2 số còn lại chia 3 dư 1 ) loại vì không có số chính phương nào chia 3 dư 2
Nếu trong 3 số có 1 số chia 3 dư 1 thì p^2 + q^2 + r^2 chia 3 dư 1 ( 2 số còn lại chia hết cho 3 ) chọn
Vậy trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3
mà p, q, r là các số nguyên tố nên có 1 số nhận giá trị là 3.
Do 1 ko là số nguyên tố nên bộ ba số nguyên tố có thể là 2 - 3 - 5 hoặc 3 - 5 - 7
Với 3 số nguyên tố là 2 - 3 - 5 thì p^2 + q^2 + r^2 = 2^2 + 3^2 + 5^2 = 38 ( là hợp số, loại )
Vậy 3 số nguyên tố cần tìm là 3 5 7
Nguyễn Vân Huyền đã chọn câu trả lời này
1. Các số đó là 2,3,5,7
2.Các số sau là hợp sô hết vì :
a) A chia hết cho 3
b) B chia hết cho 11
c) C chia hết cho 101
d) D = 1112111 = 1111000 + 1111 chia het cho 1111
e) E chia hết cho 3 vì 1! + 2! = 3 chia hết cho 3, còn 3! + ... + 100! cũng chia het cho 3
g) Số 3 . 5 . 7 . 9 - 28 chia hết cho 7
h) Số 311141111 = 311110000 + 31111 chia hết cho 31111
3. Xét p dưới dạng : 3k ( khi đó p = 3), 3k + 1, 3k + 2 ( k thuộc N ). Dạng thứ 3 ko thỏa mãn đề bài ( vì khi dó 8p - 1 là hợp số), 2 dạng trên đều cho 8p + 1 là hợp số.
4. r = 1.
a,b,c,d,g,h là hợp số
e là số nguyên tố
tớ chỉ biết làm bài 2 thôi
SỐ 2 nha bạn:)) Tick mình nha=))