Cho abc chia hết cho 27.Hãy chứng minh bca cũng chia hết cho 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì abc chia hết cho 27
=> abc chia hết cho 3 và 9
=>a+b+c chia hết cho 3 và 9
mà a+b+c=c+b+a(tính chất giao hoán)
=>cba chia hết cho 3 và 9
=>cba chia hết cho 27
tík nha
abc chia hết cho 27 tức là chia hết cho 3 và 9
a+b+c chia hết cho 3 và 9
b+c+a cũng chia hết cho 3 và 9
bca chia hết cho 3 và 9 nên bca chia hết cho 27
Ta có:abc chia hết cho 27
abc0 chia hết cho 27
abc0=a*1000+bc0 chia hết cho 27
=a*999+a+bc0 chia hết cho 27
=a*999+abc chia hết cho 27
=a*27*37+bca chia hết cho 27
Mà a*27*37 chia hết cho 27
=) bca chia hết cho 27
Ta có:abc chia hết cho 27
⇒100a + 10b + c chia hết cho 27
⇒10(100a + 10b + c) chia hết cho 27
⇒1000a + 100b + 10c chia hết cho 27
⇒999a + (100b + 10c + a) chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b + 10c + a = bca chia hết cho 27
bca = 100b + 10c + a ( 1 )
abc chia hết cho 27 < = > 100b + 10c + a chia hết cho 27 <=> 19a + 10b + c chia hết cho 27
=> c = 27k - 19a - 10b
Thay vào ( 1 ) => bca = 100b + 10 ( 27k - 19a - 10b ) + a = 270K - 189a = 27( 10k - 7a ) chia hết cho 27
abc chia hết cho 27
=> 100a + 10b + c chia hết cho 27
=> 10(100a + 10b + c) chia hết cho 27
=> 1000a + 100b + 10c chia hết cho 27
=> 999a + (100b + 10c + a) chia hết cho 27
mà 999a chia hết cho 27
vậy 100b + 10c + a = bca chia hết cho 27
t i c k nha!! 6457567568876968907808706905785687697605
abc chia hết cho 27=> abc cũng chia hết cho 3 và 9(vì 3.9=27)
=> a+ b+ c chia hết cho 9 và 3
=b+ c+ a cũng chia hết cho 3 và 9=>bca chia hết cho 3 và 9=>bca chia hết cho 27( vì 3.9=27)
Ủng hộ nhé
Ta có bca = 100b + 10c + a (1)
abc chia hết 27 <=> 100a + 10b + c chia hết 27 <=> 19a + 10b + c chia hết 27
=> c = 27k - 19a - 10b
Thay vào (1) => bca = 100b + 10(27k - 19a - 10b) + a = 270k - 189a = 27(10k - 7a) chia hết 27
=> bca chia hết cho 27
Vậy khi abc chia hết cho 27 thì bca cũng chia hết cho 27.
Ta có : abc chia hết cho 27
=> 100.a + 10.b + c chia hết cho 27
=> 10. ( 100.a + 10.b + c ) chia hết cho 27
=> 1000.a + 100.b + 10.c chia hết cho 27
=> 999.a + ( 100.b + 10.c + a ) chia hết cho 27.
Mà 999.a chia hết cho 27 nên 100.b + 10.c + a chia hết cho 27
Hay bca chia hết cho 27.
Vậy bca chia hết cho 27.
Ta thấy : abc chia hết cho 27
=> 100.a + 10.b + c chia hết cho 27
=> 10. ( 100.a + 10.b + c ) chia hết cho 27
=> 1000.a + 100.b + 10.c chia hết cho 27
=> 999.a + ( 100.b + 10.c + a ) chia hết cho 27.
Mà 999.a chia hết cho 27 nên 100.b + 10.c + a chia hết cho 27
Hay bca chia hết cho 27.
Vậy bca chia hết cho 27.
Ta có:abc-bca
=100xa+10xb+c-100xb-10xc-a
=99xa-90xb-9xc
=9x(11xa-10xb-c) chia hết cho 9(1)
Do abc chia hết cho 27=>abc chia hết cho 3=>a+b+c chia hết cho 3
=>14xa+14xb+14xc chia hết cho 3
Ta có:3xa+24xb+15xc cũng chia hết cho 3
=>14xa+14xb+14xc-3xa-24xb-15xc chia hết cho a
=>11xa-10xb-c chia hết cho 3
=>(1) chia hết cho 27
=>abc-bca chia hết cho 27
Mà abc chia hết cho 27
=>bca chia hết cho 27
abc \(⋮\)27
\(\Rightarrow\)10abc \(⋮\)27
hay abc0 \(⋮\)27
\(\Rightarrow\)1000a + bc0 \(⋮\)27
\(\Rightarrow\)999a + a + bc0 \(⋮\)27
vì 999a \(⋮\)27 nên a + bc0 \(⋮\)27 hay bca \(⋮\)27
abc chia hết cho 27
=> abc0 cũng chia hết cho 27
=> 1000a + bc0 chia hết cho 27
=> 999a + a + bc0 chia hết cho 27
=> 999a + bca chia hết cho 27
Mà 999 = 27. 37 => 999 chia hết cho 37
=> bca cũng chia hết cho 37( đpcm)