K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

x<0=>x-3/5<0

=>x-3/5=-9/4

=>x=-9/4+3/5

=>x=-33/20

Vậy x=-33/20

 

8 tháng 8 2016

\(\left(1\frac{1}{4}-\frac{3}{5}\right):\frac{17}{20}< \frac{x}{17}< \left(5\frac{1}{3}-3\frac{1}{2}\right).\frac{12}{17}\)

\(\left(\frac{5-3}{4}\right):\frac{17}{20}< \frac{x}{17}< \left(\frac{16}{3}-\frac{7}{2}\right).\frac{12}{17}\)

\(\frac{1}{2}:\frac{17}{20}< \frac{x}{17}< \left(\frac{32-21}{6}\right).\frac{12}{17}\)

\(\frac{10}{17}< \frac{x}{17}< \frac{3}{2}.\frac{12}{17}\)

\(\frac{10}{17}< \frac{x}{17}< \frac{18}{17}\)

( Mik thấy mẫu giống nhau mik sẽ bỏ mẫu đi mik sẽ tìm tử )

=> 10 < 11 ; 12 ; 13 ; 14 ; 15 ; 16 ; 17 < 18

=> x = { 11 ; 12 ; 13 ; 14 ; 15 ; 16 ; 17 }

k mik nha làm ơn đó

15 tháng 10 2015

Ta có x<4 nên biểu thức \(x-\frac{3}{5}<0\)

=>\(-x+\frac{3}{5}=\frac{9}{4}\)

\(-x=\frac{33}{20}\)

\(x=-\frac{33}{20}\)

Vậy x=33/20

tick cho minh nha

31 tháng 1 2021

Bài 1: 

Ta có: \(P=\frac{1}{1+x^2}+\frac{4}{4+y^2}=\frac{1}{1+x^2}+\frac{1}{1+\frac{y^2}{4}}\)

Đặt \(\left(x;\frac{y}{2}\right)=\left(a;b\right)\left(a,b>0\right)\)

\(\Rightarrow\hept{\begin{cases}P=\frac{1}{1+a^2}+\frac{1}{1+b^2}+2ab\\ab\ge1\end{cases}}\)

Ta có: \(P=\frac{1}{1+a^2}+\frac{1}{1+b^2}+2ab\)

\(\ge\frac{1}{ab+a^2}+\frac{1}{ab+b^2}+2ab=\frac{1}{ab}+2ab\)

\(=\left(\frac{1}{ab}+ab\right)+ab\ge2+1=3\)

Dấu "=" xảy ra khi: \(ab=\frac{1}{ab}\Rightarrow ab=1\Rightarrow xy=2\)

31 tháng 1 2021

Bài 3: 

Đặt \(\left(a-1;b-1;c-1\right)=\left(x;y;z\right)\left(x,y,z>1\right)\)

Khi đó:

\(BĐTCCM\Leftrightarrow\frac{\left(x+1\right)^2}{y}+\frac{\left(y+1\right)^2}{z}+\frac{\left(z+1\right)^2}{x}\ge12\)

Thật vậy vì ta có:

\(VT=\frac{\left(x+1\right)^2}{y}+\frac{\left(y+1\right)^2}{z}+\frac{\left(z+1\right)^2}{x}\)

\(=\frac{x^2+2x+1}{y}+\frac{y^2+2y+1}{z}+\frac{z^2+2z+1}{x}\)

\(=\left(\frac{2x}{y}+\frac{2y}{z}+\frac{2z}{x}\right)+\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Áp dụng BĐT Cauchy ta có:

\(VT\ge3\sqrt[3]{\frac{2x}{y}\cdot\frac{2y}{z}\cdot\frac{2z}{x}}+6\sqrt[6]{\frac{x^2}{y}\cdot\frac{y^2}{z}\cdot\frac{z^2}{x}\cdot\frac{1}{x}\cdot\frac{1}{y}\cdot\frac{1}{z}}=6+6=12\)

Dấu "=" xảy ra khi: \(x=y=z\Leftrightarrow a=b=c\)