K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

đáp án :

a) \(cos^2\alpha\)

b) 1

c) \(sin^2\alpha\)

d) \(sin^2\alpha\)

e) 2

g) 1

h) \(sin^3\alpha\)

i) \(sin^2\alpha\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2018

a)

\(\sin ^4a-\cos ^4a+1=(\sin ^2a-\cos ^2a)(\sin ^2a+\cos^2a)+1\)

\(=(\sin ^2a-\cos ^2a).1+1=\sin ^2a-\cos ^2a+\sin ^2a+\cos ^2a\)

\(=2\sin ^2a\)

b) \(\sin ^2a+2\cos ^2a-1=(\sin ^2a+\cos^2a)+\cos ^2a-1\)

\(=1+\cos ^2a-1=\cos ^2a\)

\(\Rightarrow \frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{\frac{\cos ^2a}{\sin ^2a}}=\sin ^2a\)

c)

\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)

\(=\frac{1}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\frac{1}{\cos ^2a}-1\)

\(=\frac{1-\cos ^2a}{\cos ^2a}=\frac{\sin ^2a}{\cos ^2a}=\tan ^2a\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2018

d)

\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}\) \(=\frac{\sin ^2a(1-\frac{1}{\cos ^2a})}{\cos ^2a(1-\frac{1}{\sin ^2a})}\)

\(=\frac{\sin ^2a.\frac{\cos ^2a-1}{\cos ^2a}}{\cos ^2a.\frac{\sin ^2a-1}{\sin ^2a}}\) \(=\frac{\sin ^2a.\frac{-\sin ^2a}{\cos ^2a}}{\cos ^2a.\frac{-\cos ^2a}{\sin ^2a}}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)

f)

\(\frac{(\sin a+\cos a)^2-1}{\cot a-\sin a\cos a}=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\frac{\cos a}{\sin a}-\sin a\cos a}\)

\(=\sin a.\frac{1+2\sin a\cos a-1}{\cos a-\cos a\sin ^2a}\)

\(=\sin a. \frac{2\sin a\cos a}{\cos a(1-\sin ^2a)}=\sin a. \frac{2\sin a\cos a}{\cos a. \cos^2 a}=\frac{2\sin ^2a}{\cos ^2a}=2\tan ^2a\)

22 tháng 6 2019

\(\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)

22 tháng 6 2019

\(\tan^2\alpha\left(2.\cos^2\alpha+\sin^2\alpha-1\right)=\tan^2\alpha\left(\cos^2\alpha+\left(\sin^2\alpha+\cos^2\alpha\right)-1\right)\)\(=\tan^2\alpha.\cos^2\alpha=\left(\frac{1}{\cos^2\alpha}-1\right)\cos^2\alpha=1-\cos^2\alpha=\sin^2\alpha\)

7 tháng 6 2018

a, Sử dụng tích chéo:

Ta có:

+/ \(\cos\alpha.\cos\alpha=\cos^2\alpha\) (1)

+/ \(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)=1-\sin^2\alpha\)

\(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow1-\sin^2\alpha=\cos^2\alpha\)

hay \(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)=\cos^2\alpha\) (2)

Từ (1), (2)

\(\Rightarrow\)\(\cos\alpha.\cos\alpha=\)\(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)\)

\(\Rightarrow\)\(\dfrac{\cos\alpha}{1-\sin\alpha}=\dfrac{1+\sin\alpha}{\cos\alpha}\) (đpcm)

b/ xem lại đề

7 tháng 6 2018

sr bạn nha mình ghi thiếu đằng sau biểu thức đó là = 4

12 tháng 10 2018

a) ta có : \(sin\alpha.cos\alpha\left(tan\alpha+cot\alpha\right)=sin\alpha.cos\alpha\left(\dfrac{sin\alpha}{cos\alpha}+\dfrac{cos\alpha}{sin\alpha}\right)\)

\(=sin^2\alpha+cos^2\alpha=1\)

b) ta có : \(\left(sin^2\alpha+cos^2\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2\)

\(=1^2+1-2sin\alpha.cos=2\left(1-2sin\alpha.cos\alpha\right)\)

c) ta có : \(tan^2\alpha-sin^2\alpha.tan^2\alpha=tan^2\alpha\left(1-sin^2\alpha\right)\)

\(=\dfrac{sin^2\alpha}{cos^2\alpha}.cos^2\alpha=sin^2\alpha\)