K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

A B C D E

+) góc ADC là góc ngoài của tam giác BED tại đỉnh D => góc ADC > BED

+) Góc AEB là góc ngoài của tam giác BED tại đỉnh E => góc AEB > BDA 

 

16 tháng 12 2021

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

Suy ra: DA=DE

16 tháng 12 2021

a) Vì BD là phân giác của ABC nên ABD = CBD

Xét Δ ABD và Δ EBD có:

BA = BE (gt)

ABD = EBD (cmt)

BD là cạnh chung

Do đó, Δ ABD = Δ EBD (c.g.c)

=> AD = DE (2 cạnh tương ứng) (đpcm)

b) Δ ABD = Δ EBD (câu a) => BAD = BED = 90o (2 góc tương ứng)

=> Δ DEC vuông tại E

Δ ABC vuông tại A có: ABC + C = 90o (1)

Δ CED vuông tại E có: EDC + C = 90o (2)

Từ (1) và (2) => ABC = EDC (đpcm)

c) Gọi giao điểm của AE và BD là H

Xét Δ ABH và Δ EBH có:

AB = BE (gt)

ABH = EBH (câu a)

BH là cạnh chung

Do đó, Δ ABH = Δ EBH (c.g.c)

=> BHA = BHE (2 góc tương ứng)

Mà BHA + BHE = 180o (kề bù) nên BHA = BHE = 90o

=> BH⊥AEBH⊥AE hay BD⊥AE(đpcm)

19 tháng 4 2017

Giải bài 63 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7

a.

Giải bài 63 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7

b. Xét ΔADE có góc ADE < góc AED (chứng minh ở phần a)

=> AE < AD (Quan hệ giữa góc - cạnh đối diện trong tam giác)

19 tháng 4 2017

a) So sánh ˆADCADC^ˆAECAEC^

Ta có: AC < AB

=> ˆABC<ˆACBABC^<ACB^ (1)

Vì AC = EC => ∆AEC cân tại C

=> ˆAEC<ˆCAEAEC^<CAE^

ˆACB=ˆAEC+ˆEACACB^=AEC^+EAC^ (góc ngoài tại C của ∆AEC)

=> ˆACB=2.ˆAECACB^=2.AEC^ (2)

Chứng minh tương tự : ˆABC=2ˆADCABC^=2ADC^ (3)

Từ (1), (2), (3) => 2ˆAEC=2ˆADC2AEC^=2ADC^ hay ˆAEC=ˆADCAEC^=ADC^

b) ∆AED có:

ˆAED=ˆADEAED^=ADE^ (chứng minh trên) => AD = AE



15 tháng 11 2017

A B C 110 o D 105 o E

\(\widehat{EAC}=180^o-\widehat{BAC}=180^o-110^o=70^o\)

Tam giác ABC cân ở A nên \(\widehat{ACB}=\frac{180^o-\widehat{A}}{2}=\frac{180^o-110^o}{2}=35^o\) (1)

CE // AD => \(\widehat{ECD}+\widehat{ADC}=180^o\) (\trong cùng phía)

 => \(\widehat{ECD}=180^o-\widehat{ADC}=180^o-105^o=75^o\)  (2)

Ta lại có: \(\widehat{ACE}=\widehat{ECD}-\widehat{ACB}=75^o-35^o=40^o\)

Trong tam giác ACE có \(\widehat{EAC}=70^o;\widehat{ACE}=40^o\)

 nên góc còn lại \(\widehat{AEC}=180^o-70^o-40^o=70^o\) 

Vậy tam giác ACE cân ở C và ta có:

   \(70^o=\widehat{A}=\widehat{E}>\widehat{C}=40^o\)

   CA = CE > AE