K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

P = (x-1)(2x+3)

=> P=2x2+3x-2x-3

=> P=2x2+x-3

=> P=\(2x^2+x+\dfrac{1}{8}-\dfrac{25}{8}\)

=> P=2\(\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{25}{8}\)

=> P=\(2\left(x+\dfrac{1}{4}\right)^2-\dfrac{25}{8}\)

=> min P =\(\dfrac{-25}{8}\) khi \(x+\dfrac{1}{4}=0\Rightarrow x=-\dfrac{1}{4}\)

\(A\left(x\right)=\dfrac{4x^4+81}{2x^2-6x+9}\)

\(=\dfrac{4x^4+36x^2+81-36x^2}{2x^2-6x+9}\)

\(=\dfrac{\left(2x^2+9\right)^2-\left(6x\right)^2}{2x^2+9-6x}\)

\(=\dfrac{\left(2x^2+9+6x\right)\left(2x^2+9-6x\right)}{2x^2+9-6x}\)

\(=2x^2+6x+9\)

=>\(M\left(x\right)=2x^2+6x+9\)

\(=2\left(x^2+3x+\dfrac{9}{2}\right)\)

\(=2\left(x^2+3x+\dfrac{9}{4}+\dfrac{9}{4}\right)\)

\(=2\left(x+\dfrac{3}{2}\right)^2+\dfrac{9}{2}>=\dfrac{9}{2}\forall x\)

Dấu '=' xảy ra khi \(x+\dfrac{3}{2}=0\)

=>\(x=-\dfrac{3}{2}\)

15 tháng 1 2024

>=9/2 là sao vậy

b: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{0;-1;1;-2\right\}\)

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

5 tháng 11 2018

\(<=> 9x^2-6x+1+(2x+1)^2+2(3x-1)(2x-1)\)

\(<=> 9x^2-6x+1+4x^2+4x+1+(6x-2)(2x-1)\)

 \(<=> 9x^2-6x+1+4x^2+4x+1+12x^2-6x-4x+2\) 

 \(<=> 25x^2-12x+4\)

5 tháng 11 2018

có bạn nào có thể giúp mình giải câu b và d được không ạ mình cần gấp

10 tháng 12 2021

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

31 tháng 10 2020

Bài 1.

Ta có : B = ( x + 2 )2 + ( x - 2 )2 - 2( x + 2 )( x - 2 )

= [ ( x + 2 ) - ( x - 2 ) ]2

= ( x + 2 - x + 2 )2

= 42 = 16

=> B không phụ thuộc vào x

Vậy với x = -4 thì B vẫn bằng 16

Bài 2.

4x2 - 4x + 1 = ( 2x )2 - 2.2x.1 + 12 = ( 2x - 1 )2

Bài 3.

Ta có : \(A=\frac{3}{2}x^2+2x+3\)

\(=\frac{3}{2}\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{7}{3}\)

\(=\frac{3}{2}\left(x+\frac{2}{3}\right)^2+\frac{7}{3}\ge\frac{7}{3}\forall x\)

Dấu "=" xảy ra khi x = -2/3

=> MinA = 7/3 <=> x = -2/3

\(P=x^2+4xy+4y^2-4xy-4y^2+2x+3\)

\(=x^2+2x+3\)

a: ĐKXĐ: x>=0; x<>1

\(P=\dfrac{-3+\sqrt{x}-1}{x-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}-4}{\sqrt{x}-1}\)

b: Để P=5/4 thì \(\dfrac{\sqrt{x}-4}{\sqrt{x}-1}=\dfrac{5}{4}\)

=>\(5\sqrt{x}-5=4\sqrt{x}-16\)

=>căn x=-11(loại)