K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

A = (3n^3 + 10n^2 - 5)/(3n + 1)
A = (3n^3 + n^2 + 9n^2 + 3n - 3n - 1 -4)/(3n+1)
A= n^2 + 3n - 1 - 4/(3n+1)
biểu thức 3n^3 + 10n^2 - 5 chia hết cho giá trị của biểu thức 3n + 1 khi:
3n+1 = ±1,±2, ±4
=> n = 0,-2/3,1/3,-1,1,-5/3
chọn giá trị nguyên: n = 0,-1,1

22 tháng 5 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có:  3 n 3 + 10 n 2 - 5  = 3 n + 1 n 2 + 3 n - 1 - 4

Để phép chia đó là chia hết thì 4 ⋮ 3n + 1⇒ 3n + 1 ∈ Ư(4)

       3n + 1 ∈ {-4; -2; -1; 1; 2; 4}

       3n + 1 = -4⇒ 3n = -5⇒ n = Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ∉ Z : loại

       3n + 1 = -2⇒ 3n = -3⇒ n = -1 ∈ Z

       3n + 1 = -1⇒ 3n = -2⇒ n = Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ∉ Z : loại

       3n + 1 = 1⇒ 3n = 0⇒ n = 0 ∈ Z

       3n + 1 = 2⇒ 3n = 2⇒ n = Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ∉ Z : loại

       3n + 1 = 4⇒ 3n = 3⇒ n = 1 ∈ Z

Vậy n ∈ {-1; 0; 1} thì  3 n 3 + 10 n 2 - 5  chia hết cho 3n + 1.

26 tháng 12 2021

b: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)

a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)

=>\(n\in\left\{-1;-3;5;-9\right\}\)

b: =>n-3+4 chia hết cho n-3

=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{4;2;5;1;7;-1\right\}\)

c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1

=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)

d: =>10n^2-10n+11n-11+1 chia hết cho n-1

=>\(n-1\in\left\{1;-1\right\}\)

=>\(n\in\left\{2;0\right\}\)

20 tháng 5 2016

a) Cho 3n +1=0 => n=\(\frac{-1}{3}\)

Sau đó thay vào biểu thức 3n3+10n2-5 sẽ tìm ra n=-4

b) Cho n-1=0 => n=1

Sau đó thay vào biểu thức 10n2+n -10 sẽ  tìm ra n=1

Cho mình nha!!! <3

21 tháng 10 2015

Lấy 3n^3 + 10n^2 - 5 : 3n + 1 như bình thường, cuối cùng được dư bao nhiêu thì số đó phải chia hết cho 3n + 1. Thì 3n + 1 phải thuộc tập hợp ước của số đó. Và cứ thế tìm n thôi.

16 tháng 12 2016

Đặt tính ra, kết quả của số dư là \(-\frac{11}{3}n-5\)

Để biểu thức \(3n^3+10n^2-5\)chia hết cho biểu thức \(3n-1\)thì:

\(\frac{-11}{3}n-5=0\)

\(=>\frac{-11}{3}n=5\)

\(=>n=\frac{-15}{11}\)