Tìm x biết
a) \(3^{x-1}+7\cdot3^{x-1}=216\)
b) \(\left(x-2\right)^8=\left(x-2\right)^{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a nhân loạn lên, c 813=(34)3=312:3x....
d)NHớm x-7x+1 vào
a) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\)
Th1 : \(x-\dfrac{1}{2}=0\)
\(x=0+\dfrac{1}{2}\)
\(x=\dfrac{1}{2}\)
Th2 : \(-3-\dfrac{x}{2}=0\)
\(\dfrac{x}{2}=-3\)
\(x=\left(-3\right)\cdot2\)
\(x=-6\)
Vậy \(x\) = \(\left(\dfrac{1}{2};-6\right)\)
b) \(x-\dfrac{1}{8}=\dfrac{5}{8}\)
\(x=\dfrac{5}{8}+\dfrac{1}{8}\)
\(x=\dfrac{3}{4}\)
c) \(-\dfrac{1}{2}-\left(\dfrac{3}{2}+x\right)=-2\)
\(\dfrac{3}{2}+x=-\dfrac{1}{2}-\left(-2\right)\)
\(\dfrac{3}{2}+x=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}-\dfrac{3}{2}\)
\(x=0\)
d) \(x+\dfrac{1}{3}=\dfrac{-12}{5}\cdot\dfrac{10}{6}\)
\(x+\dfrac{1}{3}=-4\)
\(x=-4-\dfrac{1}{3}\)
\(x=-\dfrac{13}{3}\)
1) ( 2x -15 )5 = ( 2x - 15 )3
( 2x -15 )5 - ( 2x - 15 )3 = 0
( 2x - 15 )3 . [ ( 2x - 15 )2 - 1 ] = 0
\(\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{cases}}\)
\(\orbr{\begin{cases}2x-15=0\\2x-15=1\end{cases}}\)
\(\orbr{\begin{cases}2x=15\\2x=16\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{15}{2}\\x=8\end{cases}}\)
a) \(2^x+5=21\)
\(\Rightarrow2^x=21-5=16\Rightarrow2^x=2^4\)
Vậy x = 4
b) \(2^x-1+3^2=5^2+2.5\)
\(\Rightarrow2^x-1+9=35\)
\(\Rightarrow2^x=35-9+1=27\)
Vậy x không có giá trị
c;d;e;f làm tương tự
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
a)\(3^{x-1}+7.3^{x-1}=216\)
\(1.3^{x-1}+7.3^{x-1}=216\)
\(3^{x-1}.\left(1+7\right)=216\)
\(3^{x-1}.8=216\)
\(3^{x-1}=216:8\)
\(3^{x-1}=27\)
\(3^{x-1}=3^3\)
\(x-1=3\)
\(x=3+1\)
\(x=4\)
a)\(3^{x-1}+7.3^{x-1}=216\)
\(\left(7+1\right).3^{x-1}=216\)
\(8.3^{x-1}=216\)
\(3^{x-1}=216:8\)
\(3^{x-1}=27\)
\(3^{x-1}=3^3\)
\(\Rightarrow x-1=3\)
\(x=3+1\)
\(\Rightarrow x=4\)
b)\(\left(x-2\right)^8=\left(x-2\right)^{10}\)
\(\left(\pm1\right)^8=\left(\pm1\right)^{10}\)
TH1:\(x-2=1\)
\(\Rightarrow x=3\)
TH2:\(x-2=-1\)
\(\Rightarrow x=1\)