K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)(*)

Ta có: (a + 2c)(b + d) = (a + c)(b + ad)

\(\Leftrightarrow\)ab + ad + 2bc + 2cd = ab + 2ad + bc + 2cd

\(\Leftrightarrow\)ab + ad + 2bc + 2cd - ab - 2ad - bc - 2cd = 0

\(\Leftrightarrow\)ad + bc = 0 \(\Leftrightarrow\) bc - ad = 0 \(\Leftrightarrow\) ad = bc \(\Rightarrow\)(*) luôn đúng => ĐPCM

28 tháng 8 2023

Áp dụng công thức tỉ lệ phân số ta có : 

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{ac}{bd}\)

17 tháng 3 2018

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)

\(\Rightarrow ad+ad+bc=bc+ad+bc\)

\(\Rightarrow2ad+bc=2bc+ad\)

\(\Rightarrow ab+2ad+bc+2cd=ab+2bc+ad+2cd\)

\(\Rightarrow a\left(b+2d\right)+c\left(b+2d\right)=b\left(a+2c\right)+d\left(a+2c\right)\)

\(\Rightarrow\left(a+c\right)\left(b+2d\right)=\left(a+2c\right)\left(b+d\right)\rightarrowđpcm\)

17 tháng 3 2018

DỄ MÀ

(a+2c)(b+d)=ab+ad+2bc+2cd

(a+c)(b+2d)=ab+2ad+bc+2cd

Vì a/b=c/d nên ad=bc

suy ra đpcm

29 tháng 7 2018

Đặt k sao cho:

   \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=k.b;c=k.d\)

Ta có: \(\frac{a+2c}{b+2d}=\frac{kb+2\left(kd\right)}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\)(1)

và       \(\frac{a-3c}{b-3d}=\frac{kb-3kd}{b-3d}=\frac{k\left(b-3d\right)}{b-3d}=k\)(2)

Từ (1) và (2) suy ra \(\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\)

Bài toán đc chứng minh

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

20 tháng 1 2016

a) Ta có: -a - b - b = -a - b + c

Vậy: (-a-b+c) - (-a-b-c) = (-a-b+c) - (-a-b+c) = (-a-b+c) : 2

b) (-1-1+-2) : 2 = (-2+-2) : 2 = (-4) : 2 = -2

26 tháng 12 2019

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (1).

Có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{a+c}{b+d}=\frac{a+2c}{b+2d}.\)

\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)

Chúc bạn học tốt!