với x>0, tìm giá trị nhỏ nhất của biểu thức:
\(A=4x^2-3x+\dfrac{1}{4x+2012}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+4x+1=2\left(x^2+2x+1\right)-1=2\left(x+1\right)^2-1\ge-1\)
\(A_{min}=-1\) khi \(x=-1\)
Câu B chỉ có max, ko có min
\(B=-x^2+3x+4=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{25}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
\(B_{max}=\dfrac{25}{4}\) khi \(x=\dfrac{3}{2}\)
Câu C cũng chỉ có max, không có min
\(C=-4x^2+8x=-4\left(x^2-2x+1\right)+4=-4\left(x-1\right)^2+4\le4\)
\(C_{max}=4\) khi \(x=1\)
Câu D cũng chỉ có max, không có min
\(D=\dfrac{3}{4x^2-4x+1+4}=\dfrac{3}{\left(2x-1\right)^2+4}\le\dfrac{3}{4}\)
\(C_{max}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
(4 câu có 3 câu sai đề)
Nhầm đề bài Sorrry
đáng lẽ là ntn này giúp con dc ko ạ
\(\dfrac{3}{4x^{2_-}4x+5}\) Giúp con :(
\(P=\left(4x^2\right)-3x+\left(\frac{1}{4x}\right)+2015\)
\(=\left(4x^2-4x+1\right)+x+\frac{1}{4x}+2014\)
\(=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2014\)
Áp dụng bđt Cauchy cho 2 số không âm ;
\(x+\frac{1}{4x}\ge2\sqrt[2]{\frac{1}{4}}=1\)
\(< =>\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2014\ge0+1+2014=2015\)
Vậy \(Min_p=2015\)xảy ra khi \(x=\frac{1}{2}\)
\(M=\)như trên
\(=>M=4x^2-4x+1+x+\frac{1}{4x}+2010\)
\(=>M=\left(4x^2-4x+1\right)+\left(x+\frac{1}{4x}\right)+2010\)
\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\)
Áp dụng BĐT Cô- si cho 2 số không âm, ta có:
\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=2\sqrt{\frac{1}{4}}=1\)
\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\ge0+1+2010=2011\\ \)
=>minM=2011 khi x=\(\frac{1}{2}\)
`A=x^2-4x+1/(x^2-4x+4)+5`
`=x^2-4x+4+1/(x^2-4x+4)+1`
Áp dụng BĐT cosi với 2 số dương ta có:
`x^2-4x+4+1/(x^2-4x+4)=(x-2)^2+1/(x-2)^2>=2`
`=>x^2-4x+4+1/(x^2-4x+4)+1>=3`
Dấu "=" xảy ra khi `(x-2)^2=1/(x-2)^2`
`<=>(x-2)^4=1`
`<=>` $\left[ \begin{array}{l}x=3\\x=1\end{array} \right.$
Vậy `min_A=3<=>` $\left[ \begin{array}{l}x=3\\x=1\end{array} \right.$
ta có \(\dfrac{5-3x}{4x-8}=\dfrac{-\dfrac{3}{4}\left(4x-8\right)-1}{4x-8}=-\dfrac{3}{4}-\dfrac{1}{4x-8}\)
x ∈ Z, x ≠ 2 nên 4x-8≠0
Mà \(\dfrac{1}{4x-8}< 1\Leftrightarrow-\dfrac{1}{4x-8}>-1\)
\(\Rightarrow E=-\dfrac{3}{4}-1=-\dfrac{7}{4}\)
gtln chứ không phải là gtnn nha mấy bạn