cho tam giac ABC co AB=AC. goi H la trung diem cua canh BC . CMR
a/AH la tia phan giac cua goc BAC va AH vuong voi BC
b/tren tia doi cua tia HA lay diem K sao cho HK=AH.Chung minh rang CK//AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{HAB}=90^0-60^0=30^0\)
b: Xét ΔAHI và ΔADI có
AH=AD
HI=DI
AI chung
Do đó: ΔAHI=ΔADI
Ta có: ΔAHD cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
c: Xét ΔAHK và ΔADK có
AH=AD
\(\widehat{HAK}=\widehat{DAK}\)
AK chung
Do đó: ΔAHK=ΔADK
Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)
=>DK//AB
Bài này cô mk dạy phải chứng minh thẳng hàng, không đc ra ngay nếu không sẽ mất điểm đó bạn.
Bài 6:
b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)
=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).
Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)
=> \(\widehat{ADB}+\widehat{HDB}=120^0\)
Mà \(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)
=> \(2.\widehat{ADB}=120^0\)
=> \(\widehat{ADB}=120^0:2\)
=> \(\widehat{ADB}=60^0.\)
=> \(\widehat{ADB}=\widehat{HBD}=60^0\)
Xét \(\Delta ABD\) có:
(định lí tổng ba góc trong một tam giác).
=> \(90^0+\widehat{ABD}+60^0=180^0\)
=> \(150^0+\widehat{ABD}=180^0\)
=> \(\widehat{ABD}=180^0-150^0\)
=> \(\widehat{ABD}=30^0\)
Vậy \(\widehat{ABD}=30^0.\)
Chúc bạn học tốt!
a) Xét ΔABH và ΔACH, ta có :
AB = AC(gt)
BH = HC(vì H là trung điểm đoạn thẳng BC)
AH là cạnh chung
⇒ΔABH = ΔACH ( c.c.c )
⇒ Góc BAH = góc CAH (2 góc tương ứng)
⇒AH là tia phân giác của góc BAC
b)Xét ΔAHB và ΔKHC, ta có :
AH = HK ( gt)
BH = HC ( H là trung điểm )
góc AHB = góc KHC ( đối đỉnh )
⇒ΔAHB = ΔKHC ( c.g.c )
⇒AB//CK ( 2 cạnh tương ứng )
xong rồi chúc bn học tốt nhé !
nhớ tick cho mình nha An Binnu
xin lỗi nha tớ vẽ hình ko được đẹp ///=///, //=//,/=/
hơi sai ak nha