Mk cần gấp lắm,bạn nào bik làm thì giúp mk nha🙏🙏🙏 pờ li z
Cho x,y,z thỏa mãn x+y+z =3 .tìm GTNN của A= x2 + y2 + z2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\frac{3x+3y+2z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}}\)
\(\Leftrightarrow Q=\frac{3x+3y+2z}{\sqrt{6\left(x^2+xy+yz+zx\right)}+\sqrt{6\left(y^2+xy+yz+zx\right)}+\sqrt{z^2+xy+yz+zx}}\)
\(\Leftrightarrow Q=\frac{3x+3y+2z}{\sqrt{3\left(x+y\right).2\left(x+z\right)}+\sqrt{3\left(y+x\right).2\left(y+z\right)}+\sqrt{\left(z+x\right).\left(z+y\right)}}\)
\(\Rightarrow Q\ge\frac{3x+3y+2z}{\frac{3\left(x+y\right)+2\left(x+z\right)}{2}+\frac{3\left(y+x\right)+2\left(y+z\right)}{2}+\frac{\left(z+x\right)+\left(z+y\right)}{2}}\)
\(\Rightarrow Q\ge\frac{3x+3y+2z}{\frac{9x+9y+6z}{2}}=\frac{2}{3}\)
Dấu "=" xảy ra khi \(x=y=1\)và \(z=2\)
Bạn tham khảo lời giải tại đây:
cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24
cách tính khối lượng biết khối lượng riêng và thể tích của chúng ta dựa theo công thức m=D.V
trong đó m(khối lượng)
D(khối lượng riêng)
V(thể tích)
cách tính thể tích của hình hộp chữ nhật
V=a.b.c
X - { [ -x + (x+3) ] } - [ (x+3) - (x-2)] = 0
X - { -x + x + 3 } - [ x +3 - x +2] = 0
X - 3 - 5 = 0
x - 8 = 0
x = 8
\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{49}{16}\)
\(M_{min}=\dfrac{49}{16}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{\sqrt{7}};\dfrac{2}{\sqrt{14}};\dfrac{2}{\sqrt{7}}\right)\)
\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{7}{4}\)
\(M_{min}=\dfrac{7}{4}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{\sqrt{2}};1\right)\)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
EC=DB
Do đó:ΔEBC=ΔDCB
Suy ra: \(\widehat{KCB}=\widehat{KBC}\)
hay ΔKBC cân tại K
d: Xét ΔABK và ΔACK có
AB=AC
BK=CK
AK chung
Do đó: ΔABK=ΔACK
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)
hay AK là tia phân giác của góc BAC
Áp dụng BĐT Bunhiacopski ta có:
\((x^2+y^2+z^2)(1^2+1^2+1^2)\ge(x.1+y.1+z.1)^2\)
<=>3(\(x^2+y^2+z^2)\ge3^2\)
<=>\(x^2+y^2+z^2\ge3\)
Dấu "=" xảy ra <=> x=y=z=1
Vậy minA=3<=>x=y=z=1
đấy là BĐT bunhiakcopski lớp 8 mình học rồi mà