K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2021

undefined

a, Do N là trung điểm của CD ⇒ N ∈ (ACD). 

Ta có N ∈ (ABN).

Mặt khác: A ∈ (ACD) và A ∈ (ABN)

⇒ (ACD) \(\cap\) (ABN) = AN

b, Do N ∈ CD ⇒ N ∈ (CDM). Hiển nhiên : N ∈ (ABN)

Do M ∈ AB nên M ∈ (ABN). Hiển nhiên : M ∈ (CDM)

⇒ (ABN) \(\cap\) (CDM) = MN 

26 tháng 12 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Hai tam giác ABC và BAD bằng nhau ( c.c.c) nên có các đường trung tuyến tương ứng bằng nhau: CM = DM

Ta có tam giác MCD cân tại M, do đó MN ⊥ CD vì N là trung điểm của CD. Tương tự ta chứng minh được NA = NB và suy ra MN ⊥ AB. Mặt phẳng (CDM) không vuông góc với mặt phẳng (ABN) vì (CDM) chứa MN vuông góc với chỉ một đường thẳng AB thuộc (ABN) mà thôi.

21 tháng 12 2017

Ta có B là điểm chung thứ nhất.

Gọi 

=> G là điểm chung thứ hai.

Vậy 

Chọn C.

a: \(N\in SC\subset\left(SCD\right)\)

\(N\in\left(ABN\right)\)

Do đó: \(N\in\left(SCD\right)\cap\left(ABN\right)\)

Xét (SCD) và (ABN) có

\(N\in\left(SCD\right)\cap\left(ABN\right)\)

CD//AB

Do đó: (SCD) giao (ABN)=xy, xy đi qua N và xy//AB//CD

c: Chọn mp(SAC) có chứa AN

Gọi O là giao điểm của AC và BD trong mp(ABCD)

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi K là giao điểm của AN với SO

=>K là giao điểm của AN với mp(SBD)

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

29 tháng 7 2018

(MNP) ∩ (ACD) = (MNQ) ∩ (ACD) = MQ.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án C