C=4+42+23+.......+22005
Chứng mỉnh rằng C là lũy thừa của 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4+2^3+2^4+2^5+...+2^{20}\)
\(A=2^2+2^3+2^4+2^5+...+2^{20}\)
\(\Rightarrow2A=2^3+2^4+2^5+2^6+...+2^{21}\)
\(\Rightarrow2A-A=\left(2^3+2^4+2^5+2^6+...+2^{21}\right)-\left(2^2+2^3+2^4+2^5+...+2^{20}\right)\)
\(\Rightarrow A=2^{21}-2^2\)
\(=2^2\left(2^{19}-1\right)\)
Vậy A là một lũy thừa của 2.
#kễnh
\(A=4+2^2+2^3+...+2^{2006}\)
\(\mathsf{Đặt}:B=2^2+2^3+...+2^{2006}\\2B=2^3+2^4+...+2^{2007}\\2B-B=(2^3+2^4+...+2^{2007})-(2^2+2^3+...+2^{2006})\\B=2^{2007}-2^2\\B=2^{2007}-4\)
Thay \(B=2^{2007}-4\) vào A, ta được:
\(A=4+(2^{2007}-4)\\\Rightarrow A=2^{2007}\)
$\Rightarrow A$ là 1 luỹ thừa của cơ số 2.
Vậy: ...
a) 4 ; 8 ; 16 ; 32 ; 64
b) 9 ; 27 ; 81 ; 243
c) 16 ; 64 ; 256
d) 25 ; 125
Chúc bạn học tốt!! ^^
a) \(2^2=4\)
\(2^3=8\)
\(2^4=16\)
\(2^5=32\)
\(2^6=64\)
b) \(3^2=3\)
\(3^3=27\)
\(3^4=81\)
\(3^5=243\)
c) \(4^2=16\)
\(4^3=64\)
\(4^4=256\)
d) \(5^2=25\)
\(5^3=125\)
a) B = 3 + 32 + ... + 32005
3B = 32 + 33 + ... + 32006
3B - B = 32006 - 3
2B = 32006 - 3
Theo bài ra : 2B + 3 = 32006 - 3 + 3 = 32006
Ta có A = 2A – A = 2( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 ) – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )
= 2 + 4 + 2 3 + 2 4 + . . . + 2 51 – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )
= 6 + 2 3 + 2 4 + . . . + 2 51 – ( 7 + 2 3 + . . . + 2 50 ) = 2 51 - 1
Suy ra : A + 1 = 2 51
Vậy A+1 là một lũy thừa của 2
Em kiểm tra lại đề bài nhé.
c Câu hỏi của luongngocha - Toán lớp 6 - Học toán với OnlineMath
b. Câu hỏi của son goku - Toán lớp 6 - Học toán với OnlineMath
a. Câu hỏi của Trần Thị Thanh Thảo - Toán lớp 6 - Học toán với OnlineMath
Lời giải:
$(2300-22):1+1=2279$
Tổng $A$ là:
$4+\frac{(2300+22).2279}{2}=2645923$. Số này lẻ nên không thể là lũy thừa cơ số 2.