Câu 2 : Tính nhanh:
\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{8}\)+...+\(\dfrac{1}{256}\)+\(\dfrac{1}{512}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1/2+1/4+1/8+..+1/1024
Ax2=1+1/2+1/4+1/8+..+1/512( Nhân cả 2 vế với 2)
Ax2-A=(1+1/2+1/4+1/8+..+1/512)-(1/2+1/4+1/8+..+1/1024)
<=>A=1-1/1024
<=>A=1023/1024
Vậy biểu thức đã cho = 1023/1024
\(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+..........+\dfrac{1}{256}+\dfrac{1}{512}=?\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+...+\dfrac{1}{256}-\dfrac{1}{512}-\dfrac{1}{512}\)
\(=1-\dfrac{1}{512}\)
\(=\dfrac{511}{512}\)
Vậy \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+.........+\dfrac{1}{256}+\dfrac{1}{512}=\dfrac{511}{512}\)
Bài bạn trên cách trình bày mk ko hiểu lắm! mk làm lại nhé!
Đặt :
\(S=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...........+\dfrac{1}{256}+\dfrac{1}{512}\)
\(\Leftrightarrow S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.........+\dfrac{1}{2^8}+\dfrac{1}{2^9}\)
\(\Leftrightarrow2S=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.........+\dfrac{1}{2^9}\right)\)
\(\Leftrightarrow2S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.........+\dfrac{1}{2^8}\)
\(\Leftrightarrow2S-S=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^8}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+......+\dfrac{1}{2^9}\right)\)
\(\Leftrightarrow S=1-\dfrac{1}{2^9}\)
\(\Leftrightarrow S=1-\dfrac{1}{512}=\dfrac{511}{512}\)
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}+\dfrac{1}{1024}\)
\(=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(\Rightarrow2A-A=A=1-\dfrac{1}{2^{10}}\)
Lời giải:
Sửa lại đề:
\(A=1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-...-\frac{1}{512}\)
\(=1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)
\(2A=2-\left(1+\frac{1}{2}+...+\frac{1}{2^8}\right)\)
Trừ theo vế:
\(A=2A-A=\frac{1}{2^9}< 0,002\) (đpcm)
\(=\left(2+4+6+...+98\right)\left(6-6\right)\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}\right)\)
=0
\(A=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{128}-\dfrac{1}{256}\right)\)
\(A=1-\dfrac{1}{256}\)
\(A=\dfrac{255}{256}\)
Đặt \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}+\dfrac{1}{512}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}+\dfrac{1}{256}\)
\(\Rightarrow A=2A-A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}+\dfrac{1}{256}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-...-\dfrac{1}{256}-\dfrac{1}{512}\)
\(\Rightarrow A=1-\dfrac{1}{512}=\dfrac{511}{512}\)
Đặt A=12+14+18+...+1256+1512A=12+14+18+...+1256+1512
⇒2A=1+12+14+...+1128+1256⇒2A=1+12+14+...+1128+1256
⇒A=2A−A=1+12+14+...+1128+1256−12−14−18−...−1256−1512⇒A=2A−A=1+12+14+...+1128+1256−12−14−18−...−1256−1512
⇒A=1−1512=511512