K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (1)

a) Từ (1) ta có:

\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\) (2)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\) (3)

Từ (2) và (3) suy ra \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

b) Từ (1) ta có:

\(\dfrac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\dfrac{b^{2018}.k^{2018}+d^{2018}.k^{2018}}{b^{2018}+d^{2018}}=\dfrac{k^{2018}\left(b^{2018}+d^{2018}\right)}{b^{2018}+d^{2018}}=k^{2018}\) (4)

\(\dfrac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}=\dfrac{\left(bk+dk\right)^{2018}}{\left(b+d\right)^{2018}}=\dfrac{\left[k\left(b+d\right)\right]^{2018}}{\left(b+d\right)^{2018}}=k^{2018}\) (5)

Từ (4) và (5) suy ra \(\dfrac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\dfrac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\)

5 tháng 11 2018

a) \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)

Từ \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) = k ( k \(\in\) Q, k \(\ne\) 0 )

=> \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

VP = \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2.b.k+3.d.k}{2b+3d}\) = \(\dfrac{k.\left(2b+3d\right)}{2b+3d}\) = k (1)

VT = \(\dfrac{2a-3c}{2b-3d}\) = \(\dfrac{2.b.k-3.d.k}{2b-3d}\) = \(\dfrac{k.\left(2b-3d\right)}{2b-3d}\) = k (2)

Từ (1) và (2) ta có: \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)

hay: (2a+3c).(3b-3d) = (2a-3c).(2b+3d)

5 tháng 11 2018

thanks bn nhìu nha ok

4 tháng 11 2018

Cứu mình với 9:00 sáng nay mình nộp bài rùikhocroi

17 tháng 8 2021

bạn ơi bạn có câu trả lời chưa, cho mik xin vs

 

29 tháng 8 2018

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\Rightarrow\left(a+b+c\right)\left(ab+ac+bc\right)-abc=0\Rightarrow\left(a+b\right)\left(ab+ac+bc\right)+abc+ac^2+bc^2-abc=0\Rightarrow\left(a+b\right)\left(ab+ac+bc\right)+c^2\left(a+b\right)=0\Rightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\Rightarrow\left[{}\begin{matrix}a+b=0\\a+c=0\\b+c=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=-b\\c=-a\\b=-c\end{matrix}\right.\)TH1: nếu a=-b

P=(a2017+b2017)(b2018-c2018)=(-b2017+b2017)(b2018-c2018)=0

TH2: nếu b=-c

P=(a2017+b2017)(b2018-c2018)=(a2017+b2017)((-c)2018-c2018)=0

Còn một TH nữa thì bạn ghi thiếu đề rồi

1.CMR từ tỉ lệ thức \(\dfrac{a}{c}^{2018}\)=\(\dfrac{a^{2018}+b^{2018}}{c^{2018}+d^{2018}}\) Thì ta suy ra được \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{-c}{d}\). 2.CMR từ tỉ lệ thức \(\dfrac{a^{2018}+b^{2018}}{a^{2018}-b^{2018}}=\dfrac{c^{2018}+d^{2018}}{c^{2018}-d^{2018}}\) thì ta suy ra đc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{-c}{d}\) 3.Cho Δ ABC có góc B = ∠C. Kẻ tia Ax là tia đối của tia AB, kẻ tia Cy là tia đối của...
Đọc tiếp

1.CMR từ tỉ lệ thức \(\dfrac{a}{c}^{2018}\)=\(\dfrac{a^{2018}+b^{2018}}{c^{2018}+d^{2018}}\) Thì ta suy ra được \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{-c}{d}\).
2.CMR từ tỉ lệ thức \(\dfrac{a^{2018}+b^{2018}}{a^{2018}-b^{2018}}=\dfrac{c^{2018}+d^{2018}}{c^{2018}-d^{2018}}\) thì ta suy ra đc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{-c}{d}\)
3.Cho Δ ABC có góc B = ∠C. Kẻ tia Ax là tia đối của tia AB, kẻ tia Cy là tia đối của tia CB. Tia Az là tia phân giác của ∠CAx.Hai tia phân giác của 2∠CAz và ∠ ACy cắt nhau tại E.
a) Chúng minh Az // BC
b) Tính số đo ∠AEC
c) Xác định số đo các góc của tam giác ABC để tia CE//AB.
4.Cho Δ ABC có góc A=180 độ trừ đi góc 3 lần góc C

a) Chứng minh: ∠B = 2∠C

b) Từ D trên tia AB vẽ DE//AB (E ∈ tia AC). Xác định vị trí của điểm D để ED là tia phân giác của ∠AEB

1
12 tháng 3 2018

Giảng cho e vs ak e cần gấp khocroikhocroikhocroi

a: H=5|3x-6|+100>=100

Dấu = xảy ra khi x=2

b: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\left(\dfrac{a+2018c}{b+2018d}\right)^2=\left(\dfrac{bk+2018dk}{b+2018d}\right)^2=k^2\)

=>ĐPCM

13 tháng 12 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có

\(VT:\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{b^{2018}\cdot k^{2018}+d^{2018}\cdot k^{2018}}{b^{2018}+d^{2018}}=\frac{k^{2018}\left(b^{2018}+d^{2018}\right)}{b^{2018}+d^{2018}}=k^{2018}\)

\(VP:\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{\left(bk+dk\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{k^{2018}\cdot\left(b+d\right)^{2018}}{\left(b+d\right)^{2018}}=k^{2018}\)

\(\Rightarrow VT=VP\)

Hay \(\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\left(đpcm\right)\)

13 tháng 12 2019

Ủa cho tớ hỏi: VT , VP là j vậy?