Trong một cuộc thi tiếng Anh, học sinh cần trả lời 100 câu hỏi trắc nghiệm, mỗi câu trả lời đúng được 5 điểm, mỗi câu trả lời sai (hoặc không trả lời) bị trừ 2 điểm. Binh đã tham gia cuộc thi trên và đã ghi được tổng cổng là 325 điểm. Hỏi Bình trả lời đúng mấy câu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số câu mà An trả lời đúng là \(x\) (câu). Điều kiện \(x \in {\mathbb{N}^*}\).
Vì đề thi có 50 câu nên số câu sai và không trả lời là \(x - 50\) (câu).
Vì mỗi câu đúng được 5 điểm nên số điểm có được do số câu đúng là \(5x\) điểm; mỗi câu sai hoặc không trả lời bị trừ 2 điểm nên ta xem số câu làm sai hoặc không làm sẽ được –2 điểm, do đó số điểm có được do làm sai hoặc không làm là \( - 2\left( {x - 50} \right)\) (điểm).
Vì bạn An được tổng cộng 194 điểm nên ta có phương trình:
\(5x - 2\left( {50 - x} \right) = 194\)
\(5x - 100 + 2x = 194\)
\(5x + 2x = 194 + 100\)
\(7x = 294\)
\(x = 294:7\)
\(x = 42\) (thỏa mãn)
Vậy bạn An đã làm được 42 câu.
Các giá trị của số điểm có thể là \(0,2,4,...,36\). Có \(\dfrac{36}{2}+1=19\) giá trị của điểm số. Như vậy, ta cần ít nhất \(19.2+1=39\) thí sinh tham gia để đảm bảo đk bài toán. (Theo nguyên lí Dirichlet)
Số lượng số điểm mà có thể đạt đc trong cuộc thi là : 0 ; 2 ; 4 ;6 ;8 ;10 ; 12 ; 14; 16 ; 18; ... ; 36
Như vậy có 19 cách chọn điểm cho các hs ta có để có 3 học sinh cùng điểm ta cần ít nhất : 19.2+1 học sinh
=> cần ít nhất 39 học sinh tham gia để chắc chắn có 3 học sinh có cùng 1 số điểm
Gọi số câu đúng là x
Số câu sai là 30-x
Theo đề, ta có:
5x-30+x=108
\(\Leftrightarrow6x=108+30=138\)
hay x=23
Vậy: Số câu đúng là 23
Gọi số câu đúng là x; số câu sai là y.
Ta có tổng số câu là 10.
Ta có hệ phương trình:
x + y = 10
10x - 5y = 85
Giải hệ ra được: x = 9 và y = 1
Vậy bạn đó trả lời đúng 8 câu.
Giả sử thì sinh đó trả lời đúng hết thì sẽ có số điểm là: \(10.10=100\)(điểm)
Vì bạn đó được 85 điểm nên số điểm bị thừa là: \(100-85=15\)(điểm)
Số câu trả lời đúng là: \(10 - 15:(5+10)= 9\)(câu)
Vậy bạn đó đã trả lời đúng \(9\) câu
Đáp án cần chọn là: A
Giả sử bạn học sinh đó trả lời đúng cả 20 câu thì tổng số điểm đạt được là:
10.20=200 (điểm)
Số điểm dư ra là 200–148=52 (điểm)
Thay mỗi câu trả lời sai thành câu trả lời đúng thì dư ra:
10+3=13 (điểm)
Số câu trả lời sai là 52:13=4 (câu)
Số câu trả lời đúng 20–4=16 (câu)
Gọi số câu trả lời đúng ở mỗi phần lần lượt là \(a,b\)câu, \(a,b\inℕ^∗;a\le8;b\le10\).
Số câu trả lời sai ở phần A là \(10-2-a=8-a\)(câu).
Tổng số điểm Nam đạt được là:
\(4a-\left(8-a\right)+6b=49\)
\(\Leftrightarrow5a+6b=57\)
Ta có: \(6\equiv1\left(mod5\right)\Rightarrow6b\equiv b\left(mod5\right)\)mà \(57\equiv2\left(mod5\right)\)nên \(b\equiv2\left(mod5\right)\)
do đó \(b=2\)hoặc \(b=7\).
Thử \(2\)giá trị trên chỉ thu được một nghiệm thỏa mãn là \(\left(a,b\right)=\left(3,7\right)\).
Vậy số câu trả lời đúng của Nam ở mỗi phần lần lượt là \(3,7\)câu.