Cho tam giác ABC, phân giác trong AD, đường cao CH và trung tuyến BM gặp nhau ở một điểm. Chứng minh: AB.cosA = BC.cosB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này có 2 cách giải nhé
vẽ EM vuông HC
\(\Delta\)AHC có ME // AH ( \(\perp\) HC ) và AM = MC
==> ME là đg trung bình ==> ME = 1/2 AH
lại có BE // BH
==>\(\dfrac{BH}{MC}=\dfrac{OH}{OC}\) (1)
Mặt khắc : AD là pg của BAC hay AO là pg cỏa BAC
==> \(\dfrac{OH}{OC}=\dfrac{AH}{AC}\) (2)
Từ (1) và (2) ==>\(\dfrac{BH}{MC}=\dfrac{AH}{AC}\)
Ta có AB. cos A = AB .\(\dfrac{AH}{AC}\)
BC. cos B=\(\dfrac{BH}{BC}\) . BC
rút BH , AH ra sau thay vào bạn tự lm tiếp nhá
Làm giúp mình bài này với! Thanks trước nhé? | Yahoo Hỏi & Đáp
Ta có: AE = EB
CD/DB = AC/AB (tính chất đường phân giác)
AH = AB.cosA, HC = BC.cosC
Theo định lí Céva ta có:
AD, BH, CE đồng quy <=>
AH/HC.CD/DB.BE/EA = 1
<=> AH/HC.CD/DB = 1
<=> AB.cosA/(BC.cosC).AC/AB = 1
<=> (AC.cosA)/(BC.cosC) = 1
<=> AC.cosA = BC.cosC (đpcm)
P/s: Tham khảo nha