Tìm x , y biết : ( 2x - 5 )^2000 + ( 3y + 4 )^2002 < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì (2x - 5)2000 > 0
(3y + 4)2002 > 0
=> (2x - 5)2000 + (3y + 4)2002 > 0
Mà theo đề bài (2x - 5)2000 + (3y + 4)2002 < 0
=> Không tìm được giá trị của x; y thỏa mãn đề bài
\(\left(2x-5\right)^{2000}\ge0\forall x;\left(3y+4\right)^{2002}\ge0\forall y\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2000}\ge0\forall x,y\)
Kết hợp giả thiết ta có:\(2x-5=0;3y+4=0\Rightarrow x=\frac{5}{2};y=-\frac{4}{3}\)
(2x - 5)2000 + (3y + 4)2002
ta có: (2x - 5)2000 \(\ge\) 0 ; (3y + 4)2002 \(\ge\) 0
=> (2x - 5)2000 + (3y + 4)2002 \(\ge\) 0
Dấu "=" xảy ra khi 2x - 5 = 0 và 3y + 4 = 0
=> 2x = 5 và 3y = -4
=> x = 2,5 và y = \(\frac{-4}{3}\)
Ta thấy: (2x-5)2000=[(2x-5)1000]2>_0
(3y+4)2002=[(3y+4)1001]2>_0
=>(2x-5)2000+(3y+4)2002>_0
Mà (2x-5)2000+(3y+4)2002<_0
=>(2x-5)2000+(3y+4)2002=0
=>(2x-5)2000=0=>2x-5=0=>2x=5=>x=5/2
(3y+4)2002=0=>3y+4=0=>3y=-4=>y=-4/3
Vậy x=5/2,y=-4/3
a. Vì \(\left(x-y\right)^2\ge0;\left|2x-1\right|\ge0\)
Mà \(\left(x-y\right)^2+\left|2x-1\right|=0\)
=> x-y=0 và 2x-1=0
=> x=y và 2x=1
=> x=y=1/2
b. Tương tự
=> x-2y=0 và y+1=0
=> x=2y và y=-1
=> x = 2.(-1) = -2 và y=-1
c. Tương tự
=> \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}=0\left(\text{không thể }<0\right)\)
=> 2x-5=0 và 3y+4=0
=> 2x=5 và 3y=-4
=> x=5/2 và y=-4/3
ta thấy \(\begin{cases}\left(2x-5\right)^{2000}\\\left(3y+4\right)^{2002}\end{cases}\ge0}\)
Theo bài ra ta có (2x-5)2000+(3y+4)2002\(\le\) 0
=> (2x-5)2000+(3y+4)2002=0
=>2x-5=0 => x=2,5
=>3y+4=0=>y=\(\frac{-4}{3}\)
Vì (2x-5)2000 > 0 với mọi x
(3y+4)2002 > 0 với mọi y
=>(2x-5)2000+(3y+4)2002 > 0 ới mọi x;y
Mà (2x-5)2000+(3y+4)2002 < 0 (theo đề)
=>(2x-5)2000+(3y+4)2002=0
=>(2x-5)2000=(3y+4)2002=0
+)(2x-5)2000=0=>2x-5=0=>x=5/2
+)(3y+4)2002=0=>3y+4=0=>y=-4/3
Vậy x=5/2;y=-4/3