tìm giá trị nhỏ nhất của hàm số: \(y=x^2-3x-4\sqrt{x^2-3x+4}\) với \(x\in\left[1;4\right]\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do x> 0 nên 2x >0 và 3 x > 0 .
Áp dụng bất đẳng thức Cô- si cho 2 số dương: 2 x ; 3 x
f x = 2 x + 3 x ≥ 2 . 2 x . 3 x = 2 6
Dấu “=” xảy ra khi 2 x = 3 x ⇔ x = 3 2 = 6 2 .
Áp dụng bđt AM-GM ta có
\(\sqrt{3x\left(2x+y\right)}+\sqrt{3y\left(2y+x\right)}\le\frac{3x+2x+y}{2}+\frac{3y+2y+x}{2}=\frac{6\left(x+y\right)}{2}=3\left(x+y\right)\)
\(\Rightarrow P\ge\frac{x+y}{3\left(x+y\right)}=\frac{1}{3}\)
Dấu "=" xảy ra khi x=y
\(\sqrt{4-x}\ge0\) với mọi x thuộc TXĐ nên \(y=\sqrt{4-x}+\sqrt{3}\ge\sqrt{3}\)
Đáp án D
Giá trị nhỏ nhất của hàm số f x = x + 3 x 2 với x > 0 là:
A. 6 3
B. 3 4 3
C. 3 3 4 3
D. 2 3
Do x > 0 nên x 2 > 0 ; 3 x 2 > 0
Áp dụng bất đẳng thức Cô – si cho 3 số dương x 2 ; x 2 ; 3 x 2 ta được:
f x = x + 3 x 2 = x 2 + x 2 + 3 x 2 ≥ 3 . x 2 . x 2 . 3 x 2 3 = 3 . 3 4 3
\(a)\) Ta có :
\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)
Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3x+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
Chúc bạn học tốt ~
\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau :
\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)
Áp dụng vào ta có :
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)
Trường hợp 2 :
\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại )
Vậy GTNN của \(A=8\) khi \(0\le x\le8\)
Chúc bạn học tốt ~
Đặt t=\(\sqrt{x^2-3x+4}\)
ta có t \(\in\)(\(\sqrt{2}\) ;\(2\sqrt{2}\))
suy ra y = \(t^2-4t-4\) = \(\left(t-2\right)^2-8\) \(\ge-8\)
Đặt \(t=\sqrt{x^2-3x+4}\).
Ta có hàm số có dạng: \(y=t^2-4t-4\)(*) trên \(\left[1;4\right]\)
Đỉnh \(I\left(2;-8\right)\)
Hàm số đạt GTNN khi \(t=2\Leftrightarrow\sqrt{x^2-3x+4}=2\Leftrightarrow x^2-3x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=3\left(tm\right)\end{matrix}\right.\)
Vậy hàm số (*) đạt GTNN trên \(\left[1;4\right]\) là -8 khi x=3