Biểu diễn các lũy thừa sau đây thành những lũy thừa của cùng 1 cơ số .a,( 3^2)^3;(3^3)^2;(3^2)^5;9^8;27^6;81^10 b,(5^3)^2 ; (5^2)^4;(5^4)^3;25^5;125^14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3
\(x^m.x^n=x^{m+n}\)
\(x^m:x^n=x^{m-n}\)
\(x^m.y^m=\left(x.y\right)^m\)
\(x^m:y^m=\left(\frac{x}{y}\right)^m\)
2, Định nghĩa: Lũy thừa bậc n của một số hữu tỉ x, kí hiện \(^{x^n}\), là tích của n thừa số x (n là một số tự nhiên lớn hơn 1)
a) Cách 1: \(\left(3^2\right)^3=3^{2.3}=3^6\)
\(\left(3^3\right)^2=3^{3.2}=3^6\)
\(\left(3^2\right)^5=3^{2.5}=3^{10}\)
\(9^8=\left(3^2\right)^8=3^{2.8}=3^{16}\)
\(27^6=\left(3^3\right)^6=3^{3.6}=3^{18}\)
\(81^{10}=\left(3^4\right)^{10}=3^{4.10}=3^{40}\)
Cách 2: \(\left(3^2\right)^3=9^3\)
\(\left(3^3\right)^2=3^{3.2}=\left(3^2\right)^3=9^3\)
\(\left(3^2\right)^5=9^5\)
\(9^8\)
\(27^6=\left(3^3\right)^6=3^{3.6}=3^{18}=3^{2.9}=\left(3^2\right)^9=9^9\)
\(81^{10}=\left(9^2\right)^{10}=9^{2.10}=9^{20}\)
Trả lời :
b)
Ta có : \(5^{28}=5^{2.14}=\left(5^2\right)^{14}=25^{14}< 26^{14}\)
\(\Rightarrow5^{28}< 26^{14}\)
\(x^m:x^n=x^{m-n}\)
\(x^m.x^n=x^{m+n}\)
\(\left(x^m\right)^n=x^{m.n}\)
lũy thừa bậc n của là là tích của n thừa số bằng nhau
a^m.a^n=a^m=n
a^m:a^n=a^m-n
Công thức 1 : \(a^m:a^n=a^{m-n}\)với \(m\ge n\)
Công thức 2 : \(a^n\cdot b^n=\left(a\cdot b\right)^n\)
Công thức 3 : \(\frac{a^n}{b^n}=\left(\frac{a}{b}\right)^n\)
Công thức 4 : \(\left(a^m\right)^n=a^{m\cdot n}\)
Bài 5:
Dấu hiệu chia hết cho 2 là số có tận cùng là 0;2;4;6;8
Dấu hiệu chia hết cho 5 là số có tận cùng là 0;5
a: \(\left(3^2\right)^3=3^6\)
\(\left(3^3\right)^2=3^6\)
\(\left(3^2\right)^5=3^{10}\)
\(9^8=3^{16}\)
\(27^6=3^{18}\)
\(81^{10}=3^{40}\)
b: \(\left(5^3\right)^2=5^6\)
\(\left(5^2\right)^4=5^8\)
\(\left(5^4\right)^3=5^{12}\)
\(25^5=5^{10}\)
\(125^{14}=5^{42}\)