K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 2 2022

Lời giải:

$3x^2-4xy+y^2=0$

$\Leftrightarrow 3x(x-y)-y(x-y)=0$

$\Leftrightarrow (x-y)(3x-y)=0$
$\Rightarrow x-y=0$ hoặc $3x-y=0$

Nếu $x-y=0\Leftrightarrow x=y$. Thay vào pt $(2)$:
$x^2+2x=8$

$\Leftrightarrow x^2+2x-8=0$

$\Leftrightarrow (x-2)(x+4)=0$

$\Rightarrow x=2$ hoặc $x=-4$. 

Vậy hpt có nghiệm $(x,y)=(2,2); (-4,-4)$

Nếu $3x-y=0$

$\Leftrightarrow 3x=y$. Thay vô pt $(2)$:

$x^2+6x=8$

$\Leftrightarrow x^2+6x-8=0$
$\Rightarrow x=-3\pm \sqrt{17}$

$\Rightarrow y=3(-3\pm \sqrt{17})$ (tương ứng) 

Vậy tổng cộng hpt có 4 nghiệm $(x,y)$ thực.

27 tháng 12 2020

\(HPT\Leftrightarrow\left\{{}\begin{matrix}x^3-2xy^2+y\left(x^2-8y^2\right)=0\\x^2-8y^2=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)\left(x^2+xy+4y^2\right)=0\\x^2-8y^2=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2y\\x^2+xy+4y^2=0\end{matrix}\right.\\x^2-8y^2=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y\\x^2-8y^2=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y\\\left(2y\right)^2-8y^2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2;y=1\\x=-2;y=-1\end{matrix}\right.\).

29 tháng 8 2019

\(HPT\Leftrightarrow\left\{{}\begin{matrix}2x^2+2y^2-6x+8y=2\\3x^2-2y^2-9x-8y=3\end{matrix}\right.\)

\(\Leftrightarrow5x^2-15x=5\)

\(\Leftrightarrow x^2-3x-1=0\)

\(\Delta=\left(-3\right)^2-4.\left(-1\right)=13\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{matrix}\right.\)

Thế \(x=\frac{3+\sqrt{13}}{2}\)vào phương trình đầu ta được :

\(\frac{22+6\sqrt{13}}{4}+y^2-\frac{9+3\sqrt{13}}{2}+4y=1\)

\(\Leftrightarrow y^2+4y=0\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-4\end{matrix}\right.\)

Thế \(x=\frac{3-\sqrt{13}}{2}\) vào phương trình đầu ta được :

\(\frac{22-6\sqrt{13}}{4}+y^2-\frac{9-3\sqrt{13}}{2}+4y=1\)

\(\Leftrightarrow y^2+4y=0\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-4\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}\left(x;y\right)=\left(\frac{3+\sqrt{13}}{2};0\right)\\\left(x;y\right)=\left(\frac{3+\sqrt{13}}{2};-4\right)\\\left(x;y\right)=\left(\frac{3-\sqrt{13}}{2};0\right)\\\left(x;y\right)=\left(\frac{3-\sqrt{13}}{2};-4\right)\end{matrix}\right.\)