K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

\(5x^4+y^2-4x^2y-85=0\)

\(\Leftrightarrow\left(4x^4-4x^2y+y^2\right)+x^4=85\)

\(\Leftrightarrow\left(2x^2-y\right)^2+x^4=85\)\(\left(=2^2+3^4\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x=3\\\left|2x^2-y\right|=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\18-y=\pm2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=16\\y=20\end{matrix}\right.\end{matrix}\right.\left(n\right)\)

Vậy . . . >///<

\(5x^4+y^2-4x^2y-85=0\)

\(\left(2x^2\right)^2-2.2x^2.y+y^2+x^4=85\)

\(\left(2x^2-y\right)^2+x^4=85\)

Mà \(85=2^2+3^4=\left(-2\right)^2+\left(-3\right)^4\)

Vì phương trình nghiệm nguyên nên:

\(\left(2x^2-y\right)^2+x^4=2^2+3^4\)

\(\Rightarrow\orbr{\begin{cases}2x^2-y=2\\x=3\end{cases}}\)     hoặc      \(\orbr{\begin{cases}2x^2-y=3\\x=2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2.3^2-y=2\\x=3\end{cases}}\)   hoặc       \(\orbr{\begin{cases}2.2^2-y=3\\x=2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}18-y=2\\x=3\end{cases}}\)      hoặc         \(\orbr{\begin{cases}8-y=3\\x=2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=16\\x=3\end{cases}}\)                hoặc         \(\orbr{\begin{cases}y=5\\x=2\end{cases}}\)

Vậy..............

28 tháng 2 2016

Đặt \(x^2=a\ge0\)

\(PT\Leftrightarrow5a^2+y^2-4ay-85=0\)

        \(\Leftrightarrow y^2-4ay+5a^2-85=0\)

PT có nghiệm <=> \(\Delta'\ge0\)

                     \(\Leftrightarrow4a^2-\left(5a^2-85\right)\ge0\)

                     \(\Leftrightarrow-a^2+85\ge0\)

                     \(\Leftrightarrow0\le a^2\le85\)

                     \(\Leftrightarrow0\le x^4\le85\)

                     \(\Leftrightarrow0\le x\le\sqrt[4]{85}\)

                \(\Rightarrow x\in\left\{0;1;2;3\right\}\)

  1. \(x=0\Rightarrow y=\sqrt{85}\left(loại\right)\)
  2. \(x=1\Rightarrow y=2+2\sqrt{21}hoặcy=2-2\sqrt{21}\left(loại\right)\) 

     3.  \(x=2\Rightarrow y=8-\sqrt{69}hoặcy=8+\sqrt{69}\left(loại\right)\)​  

     4.  \(x=3\Rightarrow y=16hoặcy=20\left(tm\right)\)

Vậy (x;y):(3;16),(3;20)

23 tháng 10 2019

Đặt t = x 2 , t ≥ 0 , phương trình trở thành:

1 − 5 t 2 + 5 t + 10 1 + 5 = 0 *

Phương trình (*) có hệ số a .   c = 1 − 5   10   1 + 5 = − 40 < 0 ⇒ phương trình có hai nghiệm trái dấu

Vậy phương trình đã cho có 2 nghiệm phân biệt

Đáp án cần chọn là: D

30 tháng 7 2021

      \(x+y+xy=x^2+y^2\)

⇔  \(2xy+2x+2y=2x^2+2y^2\)

\(\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)           

⇔  \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)

⇔ 

⇔ 

Các cặp số nguyên (x, y) thỏa mãn phương trình là : (0; 0); (2; 2); (0; 1); (2; 1); (1; 0);(1;2).

NV
9 tháng 5 2021

Do \(2x^2+x+1>0;\forall x\) nên pt tương đương:

\(y^2+1=\dfrac{x+5}{2x^2+x+1}\)

Ta có: \(6-\dfrac{x+5}{2x^2+x+1}=\dfrac{12x^2+5x+1}{2x^2+x+1}=\dfrac{12\left(x+\dfrac{5}{24}\right)^2+\dfrac{23}{48}}{2\left(x+\dfrac{1}{4}\right)^2+\dfrac{7}{8}}>0\) ; \(\forall x\)

\(\Rightarrow\dfrac{x+5}{2x^2+x+1}< 6\Rightarrow y^2+1< 6\)

\(\Rightarrow y^2< 5\) \(\Rightarrow y^2=\left\{0;1;4\right\}\)

- Với \(y^2=0\Rightarrow y=0\Rightarrow2x^2+x+1=x+5\Rightarrow x^2=2\) (ko tồn tại x nguyên thỏa mãn) \(\Rightarrow\) loại

- Với \(y^2=1\Rightarrow2\left(2x^2+x+1\right)=x+5\)

\(\Leftrightarrow4x^2+x-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\left(loại\right)\end{matrix}\right.\)

- Với \(y^2=4\Rightarrow5\left(2x^2+x+1\right)=x+5\)

\(\Leftrightarrow10x^2+4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{5}\left(loại\right)\end{matrix}\right.\)

Vậy pt có 4 cặp nghiệm nguyên: 

\(\left(x;y\right)=\left(-1;-1\right);\left(-1;1\right);\left(0;-2\right);\left(0;2\right)\)