cho tam giác ABC vuông tại A , AH vuông với BC ( H thuộc BC) . điểm E đối xứng với H qua AB , điểm F đối xứng với H qua AC . AB cắt EH tại M , AC cắt HF tại N
a) tứ giác AMHN là hình gì ? vì sao
b) E đối xứng với F qua A
c) kẻ trung tuyến AI của tam giác ABC . c/m AI vuông với MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: E và H đối xứng nhau qua AB
nên AB là đường trung trực của EH
Suy ra: AB\(\perp\)EH tại M và M là trung điểm của EH
Ta có: H và F đối xứng nhau qua AC
nên AC là đường trung trực của HF
Suy ra: AC\(\perp\)HF tại N và N là trung điểm của FH
Xét tứ giác AMHN có
\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật
xin lỗi anh(chị) em mới lớp 6 không giải đc
thật lòng xin lỗi :(((((
((((((((🙄)))))))))___________bn ghi như mình đi thì bn sẽ có cái nịt 👉👈!!!
a: Ta có: H và D đối xứng nhau qua BA
nên AB là đường trung trực của HD
Suy ra: AB\(\perp\)HD và M là trung điểm của HD
Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE
Suy ra: AC\(\perp\)HE và N là trung điểm của HE
Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
Do đó: AMHN là hình chữ nhật
a) Xét tứ giác AMHN có:
MÂN=AMH=ANH=90độ
=> AMHN là hình chữ nhật
b) Xét tam giác ANE và tam giác DME có
AN=DM(=MH)
NE=AM(=HN)
góc ANE = góc DMA (=90 độ)
Do đó tam giác ANE = tam giác DME (C-G-C)
=> góc ADM = NAE
Trong tam giác DMA vuông tại M có:
góc ADM +MAD=90
NAE + MAD=90
Ta có
DAE=DAM+MAN+NAE
DAE=90+DAM+NAE
DAE=90+90
DAE=180
Vậy D,A,E thẳng hàng
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
mà AM=AN
nên AMHN là hình vuông
b: Xét tứ giác CEFB có
A là trung điểm của CF
A là trung điểm của EB
Do đó CEFB là hình bình hành
mà CF=EB
nên CEFB là hình chữ nhật
mà CF⊥EB
nên CEFB là hình vuông
a) Xét tứ giác ANHM, ta có
\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^o\) (gt)
=> AMHN là hình chữ nhật
b)
Xét tam giác AEH, ta có:
AM là đg trung tuyến( M là trung điểm EH)
AM là đcao(AM vuông góc với EH)
=> tam giác AEH cân tại A
Mà AM là đg trung tuyến(M là trung điểm EH)
Nên AM là đg phân giác
=> \(\widehat{EAH}=\widehat{MAH}\) (1)
Xét tam giác HAE ta có:
AN là đcao(AN vuông góc với FH)
AN là đg trung tuyến ( N là trung điểm HF)
=> tam giác AHE cân tại A
Mà AN là đg trung tuyến ( N là trung điểm HF)
Nên AN là đg phân giác
=> \(\widehat{NAH}=\widehat{NAF}\) (2)
Từ (1) và (2)
=> \(\widehat{HAM}+\widehat{HAN}=90^o=\widehat{EAM}+\widehat{NAF}\)
=> \(\widehat{HAM}+\widehat{HAN}+\widehat{EAM}+\widehat{NAF}=90^o+90^o=180^o\)
=> E,A,F thẳng hàng
Ta có:
AE=AH(tam giác AEH cân tại A)
AF=AH(tam giác HAF cân tại A)
=> AE=AF
=> E là trung điểm EF
=> E đối xứng với F qua A