K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(x^3-3x-2\ne0\)

\(\Leftrightarrow x^3-x-2x-2\ne0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-2\left(x+1\right)\ne0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x-2\right)\ne0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)^2\ne0\)

hay \(x\notin\left\{2;-1\right\}\)

\(A=\dfrac{x^4-2x^2+1}{x^3-3x-2}=\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{\left(x-2\right)\cdot\left(x+1\right)^2}=\dfrac{\left(x-1\right)^2}{x-2}\)

Để A<1 thì \(A-1< 0\)

\(\Leftrightarrow\dfrac{x^2-2x+1-x+2}{x-2}< 0\)

\(\Leftrightarrow\dfrac{x^2-3x+3}{x-2}< 0\)

=>x-2<0

hay x<2

Vậy: \(\left\{{}\begin{matrix}x< 2\\x< >-1\end{matrix}\right.\)

3 tháng 6 2018

1. Để A có nghĩa thì \(x^3-3x-2\ne0\)

\(\Rightarrow\left(x^3-x\right)-\left(2x-2\right)\ne0\)

\(\Rightarrow x\left(x^2-1\right)-2\left(x-1\right)\ne0\)

\(\Rightarrow x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\ne0\)

\(\Rightarrow\left(x^2+x-2\right)\left(x-1\right)\ne0\)

\(\Rightarrow\left(x^2-1+x-1\right)\left(x-1\right)\ne0\)

\(\Rightarrow\left[\left(x+1\right)\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)\ne0\)

\(\Rightarrow\left(x-1\right)^2\left(x+2\right)\ne0\)

\(\Rightarrow x\ne1;x\ne-2\)

2. \(A=\frac{x^4-2x^2+1}{x^3-3x-2}=\frac{\left(x^2-1\right)^2}{\left(x-1\right)^2\left(x+2\right)}=\frac{\left[\left(x-1\right)\left(x+1\right)\right]^2}{\left(x-1\right)^2\left(x+2\right)}\)

                                                    \(=\frac{\left(x-1\right)^2.\left(x+1\right)^2}{\left(x-1\right)^2\left(x+2\right)}=\frac{\left(x+1\right)^2}{x+2}\)

3/ Để A < 1 \(\Leftrightarrow\frac{\left(x+1\right)^2}{x+2}< 1\Leftrightarrow\left(x+1\right)^2< x+2\)

                                                        \(\Leftrightarrow x^2+2x+1< x+2\)

                                                         \(\Leftrightarrow x^2+x< 1\)

                                                           \(\Leftrightarrow x.\left(x+1\right)< 1\)

Vậy .....

3 tháng 6 2018

1. A có nghĩa khi \(x^3-3x-2\ne0\)

\(\Leftrightarrow x^3+x^2-x^2-x-2x-2\ne0\)

\(\Leftrightarrow x^2\left(x+1\right)-x\left(x+1\right)-2\left(x+1\right)\ne0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x-2\right)\ne0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x-2x-2\right)\)

\(\Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x-2\right)\ne0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x-2\right)\ne0\Leftrightarrow x-2\ne0\)(do \(\left(x+1\right)^2\ge0\)\(\Leftrightarrow x\ne2\)

2. Ta có :

Tử = \(x^4-2x^2+1=x^4-x^3+x^3-x^2-x^2+x-x+1\)

=\(x^3\left(x-1\right)+x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\)

=\(\left(x-1\right)\left(x^3+x^2-x-1\right)=\left(x-1\right)\left[x^2\left(x+1\right)-x\left(x+1\right)\right]\)

=\(\left(x-1\right)\left(x+1\right)\left(x^2-1\right)=\left(x-1\right)\left(x+1\right)\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)^2\left(x-1\right)^2\)

Vậy \(A=\frac{\left(x+1\right)^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x-1\right)^2}{x-2}\)

3. \(A< 1\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}< 1\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}-1< 0\Leftrightarrow\frac{x^2-2x+1-x+2}{x-2}< 0\)

\(\Leftrightarrow\frac{x^2-3x+3}{x-2}< 0\)ta có \(x^2-3x+3=x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{3}{4}=\left(x-\frac{3}{4}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\)(1) \(\Leftrightarrow x-2< 0\Leftrightarrow x< 2\)(Thỏa mãn)

Vậy x<2 thì A<1

25 tháng 12 2020

Mọi người ơi giải giúp mình với😥😥

25 tháng 12 2020

Cho Mình xin lời giải với ạ

23 tháng 12 2021

giúp mình mọi người ơi

3 tháng 7 2017

1.A=\(\frac{x^4-2x^2+1}{x^3-3x-2}\)

A có nghĩa \(\Leftrightarrow x^3-3x-2\ne0\Leftrightarrow\left(x+1\right)^2\left(x-2\right)\ne0\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

2 .A = \(\frac{x^4-2x^2+1}{x^3-3x-2}\)=\(\frac{\left(x^2-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x+1\right)^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x-1\right)^2}{x-2}\)

A<1\(\Rightarrow\frac{\left(x-1\right)^2}{x-2}-1< 0\Rightarrow\frac{x^2-2x+1-x+2}{x-2}< 0\)

\(\Rightarrow\frac{x^2-3x+3}{x-2}< 0\Rightarrow x-2< 0\)vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy x<2 thỏa mãn yêu cầu A<1

1: ĐKXĐ: \(a\ge0\)

a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)

b: \(A=\dfrac{x\left(x+1\right)^2}{x\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{x-1}\)

c: Thay x=2 vào A, ta được:

\(A=\dfrac{2+1}{2-1}=3\)

d: Để A=2 thì x+1=2x-2

=>-x=-3

hay x=3(nhận)

3 tháng 3 2022

a, ĐKXĐ:\(\left\{{}\begin{matrix}x+3\ne0\\x^2+x-6\ne0\\2-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x^2+x-6\ne0\\x\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne2\end{matrix}\right.\)

b, \(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)

\(=\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+3\right)}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}-\dfrac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(=\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\)

\(=\dfrac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)

\(=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)

\(=\dfrac{x-4}{x-2}\)

 \(c,A=\dfrac{-3}{4}\\ \Leftrightarrow\dfrac{x-4}{x-2}=\dfrac{-3}{4}\\ \Leftrightarrow4\left(x-4\right)=-3\left(x-2\right)\\ \Leftrightarrow4x-16x=-3x+6\\ \Leftrightarrow4x-16x+3x-6=0\\ \Leftrightarrow7x-22=0\\ \Leftrightarrow x=\dfrac{22}{7}\)

d, \(A=\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}=1-\dfrac{2}{x-2}\)

Để \(A\in Z\Rightarrow\dfrac{2}{x-2}\in Z\Rightarrow x-2\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Ta có bảng:
 

x-2-2-112
x0134

Vậy \(x\in\left\{0;1;3;4\right\}\)

 

3 tháng 3 2022

a)x khác -3 và x khác 2 =)