K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

\(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

Ta có: \(x^4\ge0;y^4\ge0;z^4\ge0\)

\(x>y\Rightarrow x^4>y^4\)

\(y>z\Rightarrow y-z>0\) 

\(x>z\Rightarrow z-x< 0\) 

\(\Rightarrow y-z>z-x\)

 \(\Rightarrow x^4\left(y-z\right)+y^4\left(z-x\right)>0\)

\(x>y\Rightarrow x-y>0\)

Vậy: \(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)>0\)

2 tháng 11 2019

\(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

\(A=x^4\left(y-z\right)+y^4\left(z-x\right)-z^4\left[\left(y-z\right)+\left(z-x\right)\right]\)

\(A=x^4\left(y-z\right)-z^4\left(y-z\right)+y^4\left(z-x\right)-z^4\left(z-x\right)\)

\(A=\left(y-z\right)\left(x^4-z^4\right)+\left(z-x\right)\left(y^4-z^4\right)\)

\(A=\left(y-z\right)\left(x-z\right)\left(x+z\right)\left(x^2+z^2\right)-\left(x-z\right)\left(y-z\right)\left(y+z\right)\left(y^2+z^2\right)\)

\(A=\left(y-z\right)\left(x-z\right)\left(x^3+xz^2+x^2z+z^3-y^3-yz^2-y^2z-z^3\right)\)

\(A=\left(y-z\right)\left(x-z\right)\left(x-y\right)\left(x^2+xy+y^2+z^2+zx+yz\right)\)

\(A=\frac{1}{2}\left(x-y\right)\left(y-z\right)\left(x-z\right)\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\right]\)

Vì \(x>y>z\Rightarrow A>0\)

7 tháng 11 2018

C2 là = 8xyz nha mình viết nhầm

18 tháng 11 2022

Câu 2: 

\(\left\{{}\begin{matrix}y+z>=2\sqrt{yz}\\x+z>=2\sqrt{xz}\\x+y>=2\sqrt{xy}\end{matrix}\right.\Leftrightarrow\left(x+z\right)\left(x+y\right)\left(y+z\right)>=8xyz\)

Dấu = xảy ra khi x=y=z