cho x>y>z cmr A=x^4(y-z)+y^4(z-x)+z^4(x-y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
Ta có: \(x^4\ge0;y^4\ge0;z^4\ge0\)
\(x>y\Rightarrow x^4>y^4\)
\(y>z\Rightarrow y-z>0\)
\(x>z\Rightarrow z-x< 0\)
\(\Rightarrow y-z>z-x\)
\(\Rightarrow x^4\left(y-z\right)+y^4\left(z-x\right)>0\)
\(x>y\Rightarrow x-y>0\)
Vậy: \(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)>0\)
Cho x > y > z
CMR : \(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\) luôn luôn dương
\(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
\(A=x^4\left(y-z\right)+y^4\left(z-x\right)-z^4\left[\left(y-z\right)+\left(z-x\right)\right]\)
\(A=x^4\left(y-z\right)-z^4\left(y-z\right)+y^4\left(z-x\right)-z^4\left(z-x\right)\)
\(A=\left(y-z\right)\left(x^4-z^4\right)+\left(z-x\right)\left(y^4-z^4\right)\)
\(A=\left(y-z\right)\left(x-z\right)\left(x+z\right)\left(x^2+z^2\right)-\left(x-z\right)\left(y-z\right)\left(y+z\right)\left(y^2+z^2\right)\)
\(A=\left(y-z\right)\left(x-z\right)\left(x^3+xz^2+x^2z+z^3-y^3-yz^2-y^2z-z^3\right)\)
\(A=\left(y-z\right)\left(x-z\right)\left(x-y\right)\left(x^2+xy+y^2+z^2+zx+yz\right)\)
\(A=\frac{1}{2}\left(x-y\right)\left(y-z\right)\left(x-z\right)\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\right]\)
Vì \(x>y>z\Rightarrow A>0\)
Câu 2:
\(\left\{{}\begin{matrix}y+z>=2\sqrt{yz}\\x+z>=2\sqrt{xz}\\x+y>=2\sqrt{xy}\end{matrix}\right.\Leftrightarrow\left(x+z\right)\left(x+y\right)\left(y+z\right)>=8xyz\)
Dấu = xảy ra khi x=y=z