phân tích đa thức thành nhân tử
b) xy-3x-2y+6
c) x2-6xy-4z2+9y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: \(xy-3x-2y+6\)
\(=x\left(y-3\right)-2\left(y-3\right)\)
\(=\left(y-3\right)\left(x-2\right)\)
\(A=x^2-y^2+7x+7y\)
\(=\left(x-y\right)\left(x+y\right)+7\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+7\right)\)
\(B=4x^3-4x^2+x\)
\(=x\left(4x^2-4x+1\right)\)
\(=x\left(2x-1\right)^2\)
\(C=x^2-6xy+9y^2-9\)
\(=\left(x-3y\right)^2-9\)
\(=\left(x-3y-3\right)\left(x-3y+3\right)\)
A=\(x^2+7x+7y-y^2=\left(x^2-y^2\right)+\left(7x+7y\right)=\left(x-y\right)\left(x+y\right)+7\left(x+y\right)=\left(x+y\right)\left(x-y+7\right)\)
B=\(4x^3-4x^2+x=x\left(4x^2-4x+1\right)=x\left(2x-1\right)^2\)
C=\(x^2+9y^2-9-6xy=\left(x^2-6xy+9y^2\right)-9=\left(x-3y\right)^2-3^2=\left(x-3y-3\right)\left(x-3y+3\right)\)
a) = (x - 4y)(x + 1)
b) = (x - 3y)^2 - 2^2
= (x - 3y - 2)(x - 3y + 2)
c) = x^2(x + 3) - 7x(x + 3) + 9(x + 3)
= (x + 3)(x^2 - 7x + 9)
a: \(x^2-4xy+x-4y\)
\(=x\left(x-4y\right)+\left(x-4y\right)\)
\(=\left(x-4y\right)\left(x+1\right)\)
b: \(x^2-6xy+9y^2-4\)
\(=\left(x-3y\right)^2-4\)
\(=\left(x-3y-2\right)\left(x-3y+2\right)\)
a) \(=x\left(x-5\right)\)
b) \(=\left(x+3y-3y\right)\left(x+3y+3y\right)=x\left(x+6y\right)\)
c) \(=x\left(x+y\right)-3\left(x+y\right)=\left(x+y\right)\left(x-3\right)\)
\(b,=x^2-xy=x\left(x-y\right)\\ c,=y\left(x+1\right)+z\left(x+1\right)=\left(y+z\right)\left(x+1\right)\\ d,=x^2+ax+bx+ab\\ =x\left(x+a\right)+b\left(x+a\right)=\left(x+b\right)\left(x+a\right)\)
\(a,4x^2-4x+1\\ =\left(2x\right)^2-2.2x+1^2=\left(2x-1\right)^2\\ c,x^2-6xy-25z^2+9y^2\\ =\left(x^2-2.x.3y+9y^2\right)-\left(5z\right)^2\\ =\left(x-3y\right)^2-\left(5z\right)^2\\ =\left(x-3y-5z\right)\left(x-3y+5z\right)\)
Xem lại đề ý b
a. \(x^2\) - 9y2
= (\(x\))2 - (3y)2
= (\(x\) - 3y)(\(x\) + 3y)
a: =5x(x-y)-7(x-y)
=(x-y)(5x-7)
b: =x(x+2y)+(x+2y)
=(x+2y)(x+1)
c; =(x-3)^2-9y^2
=(x-3-3y)(x-3+3y)
a
\(5x^2-5xy+7y-7x\\ =5x\left(x-y\right)+7\left(y-x\right)\\ =5x\left(x-y\right)-7\left(x-y\right)\\ =\left(5x-7\right)\left(x-y\right)\)
b
\(x^2+2xy+x+2y\\ =x\left(x+2y\right)+\left(x+2y\right)\\ =\left(x+1\right)\left(x+2y\right)\)
c
\(x^2-6x-9y^2+9\\ =x^2-6x+9-\left(3y\right)^2\\ =x^2-2.x.3+3^2-\left(3y\right)^2\\ =\left(x-3\right)^2-\left(3y\right)^2\\ =\left(x-3-3y\right)\left(x-3+3y\right)\)
Bài `1`
\(a,5x^2-10xy=5x\left(x-2y\right)\\ b,3x\left(x-y\right)-6\left(x-y\right)=\left(x-y\right)\left(3x-6\right)\\ =3\left(x-y\right)\left(x-2\right)\\ c,2x\left(x-y\right)-4y\left(y-x\right)=2x\left(x-y\right)+4y\left(x-y\right)\\ =\left(x-y\right)\left(2x+4y\right)=2\left(x-y\right)\left(x+2y\right)\\ d,9x^2-9y^2=\left(3x\right)^2-\left(3y\right)^2=\left(3x-3y\right)\left(3x+3y\right)\\ f,xy-xz-y+z=\left(xy-xz\right)-\left(y-z\right)\\ =x\left(y-z\right)-\left(y-z\right)=\left(y-z\right)\left(x-1\right)\)
Bài `3`
\(a,3x^2+8x=0\\ \Leftrightarrow x\left(3x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{8}{3}\end{matrix}\right.\)
\(b,9x^2-25=0\\ \Leftrightarrow\left(3x\right)^2-5^2=0\\ \Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-5=0\\3x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=5\\3x=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
\(c,x^3-16x=0\\ \Leftrightarrow x\left(x^2-16\right)=0\\ \Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
\(d,x^3+x=0\\ \Leftrightarrow x\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1\in\varnothing\\x=0\end{matrix}\right.\Rightarrow x=0\)
\(xy-3x-2y+6=x\left(y-3\right)-2\left(y-3\right)=\left(y-3\right)\left(x-2\right)\)
\(x^2-6xy-4z^2+9y^2=\left(x-3y\right)^2-\left(2z\right)^2=\left(x-3y-2z\right)\left(x-3y+2z\right)\)