K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2018

Câu trả lời ở đây: https://dethihsg.com/de-thi-hoc-sinh-gioi-toan-9-phong-gddt-cam-thuy-2011-2012/amp/

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

Lời giải:

\(S_n=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{(\sqrt{2}-\sqrt{1})(\sqrt{2}+\sqrt{1})}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}+...+\frac{\sqrt{n+1}-\sqrt{n}}{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{n+1}-\sqrt{n}}{(n+1)-n}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+..+\sqrt{n+1}-\sqrt{n}\)

\(=\sqrt{n+1}-1\)

Để \(S_n\in\mathbb{Z}\Rightarrow \sqrt{n+1}-1\in\mathbb{Z}\Rightarrow \sqrt{n+1}\in\mathbb{Z}\)

Đặt \(\sqrt{n+1}=t\in\mathbb{N}>1\) do \(n>0\)

\(\Rightarrow n+1=t^2\Rightarrow t^2\leq 101\) do \(n\leq 100\)

\(\Rightarrow 0< t\leq \sqrt{101}\)

\(t\in\mathbb{N}^*\Rightarrow t\in\left\{1;2;3;4;5;6;7;8;9;10\right\}\)

\(\Rightarrow n=t^2-1\in\left\{3; 8; 15; 24;35;48;63;80;99\right\}\)

NV
12 tháng 4 2021

\(P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)

\(=x-\sqrt{x}+1\)

\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^3+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=4\end{matrix}\right.\) \(\Rightarrow a+b=7\)

16 tháng 1 2018

\(S_n=\sqrt{\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{n}{4^n}}\)

\(S_{16}=\sqrt{\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{16}{4^{16}}}\)

Đặt: \(S_{16}=\sqrt{T}\Leftrightarrow T=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{16}{4^{16}}\)

\(4T=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{16}{4^{15}}\)

\(4T-T=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{16}{4^{15}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{16}{4^{16}}\right)\)

\(3T=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{15}}-\dfrac{16}{4^{16}}\)

Đặt: \(G=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{15}}\)

\(4G=4+1+\dfrac{1}{4}+...+\dfrac{1}{4^{14}}\)

\(4G-G=\left(4+1+\dfrac{1}{4}+...+\dfrac{1}{4^{14}}\right)-\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{15}}\right)\)

\(3G=4-\dfrac{1}{4^{15}}\)

\(G=\dfrac{4}{3}=\dfrac{1}{4^{15}.3}\)

\(T=\dfrac{4}{3}-\dfrac{1}{4^{15}.3}-\dfrac{16}{4^{16}}\)

\(S_{16}=\sqrt{T}=\sqrt{\dfrac{4}{3}-\dfrac{1}{4^{15}.3}-\dfrac{16}{4^{16}}}\)

16 tháng 1 2018

bn ơi cái này mk bt lm r` sử dụng Xích - ma nha !

kq\(\simeq1,3472\)