Tứ giác ABCD có A^ + B^ =180 độ, DB là phân giác góc D. Chứng minh:
a) BC=CD
b) Tứ giác ABCD là hình gì? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\widehat{A}+\widehat{B}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AD//BC
Suy ra: \(\widehat{ADB}=\widehat{DBC}\)
mà \(\widehat{ADB}=\widehat{CDB}\)
nên \(\widehat{CBD}=\widehat{CDB}\)
Xét ΔBCD có \(\widehat{CBD}=\widehat{CDB}\)
nên ΔBCD cân tại C
Suy ra: CB=CD
b: Xét tứ giác ABCD có AD//BC
nên ABCD là hình thang
a: Ta có: \(\widehat{A}+\widehat{B}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AD//BC
Suy ra: \(\widehat{ADB}=\widehat{DBC}\)
mà \(\widehat{ADB}=\widehat{CDB}\)
nên \(\widehat{CBD}=\widehat{CDB}\)
Xét ΔBCD có \(\widehat{CBD}=\widehat{CDB}\)
nên ΔBCD cân tại C
Suy ra: CB=CD
b: Xét tứ giác ABCD có AD//BC
nên ABCD là hình thang