\(\left(1+\dfrac{1}{2x}\right)\cdot lg3+lg2=lg\left(27-3^{\dfrac{1}{x}}\right)\)
giải phương trình logarit
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|x-9|=2x+5
Xét 3 TH
TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)
TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)
TH3: x=9 =>0=23(L)
Vậy x= 4/3
Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)
\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)
\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)
\(\dfrac{5\left(x-1\right)+2}{6}-\dfrac{7x-1}{4}=\dfrac{2\left(2x+1\right)}{7}\)
⇔ \(\dfrac{5x-3}{6}-\dfrac{7x-1}{4}=\dfrac{4x+2}{7}\)
⇔ \(\dfrac{5x-3}{6}-\dfrac{7x-1}{4}=\dfrac{4x+2}{7}\)
⇔ \(\dfrac{140x-84}{168}-\dfrac{294x-42}{168}=\dfrac{96x+48}{168}\)
⇔ 140x-84-294x+42=96x+48
⇔ -154x-42=96x+48
⇔ -250x=90
⇔ x=\(\dfrac{-9}{26}\)
Vậy phương trình đã cho có tập nghiệm S={\(\dfrac{-9}{26}\)}
\(\Leftrightarrow\dfrac{\left(x-2\right)\left(2x-3\right)}{x+1}>0\)
BXD:
Theo BXD, ta được; -1<x<3/2 hoặc x>2
a)\(\dfrac{7x-1}{2}+2x=\dfrac{16-x}{3}\)
\(\dfrac{\left(7x-1\right).3}{2.3}+\dfrac{2x.6}{6}=\dfrac{\left(16-x\right)2}{3.2}\)
khử mẫu
=> (7x-1).3+12x=(16-x).2
=>21x-3+12x=-2x+32
=>21x-3+12x+2x-32=0
=>35x-35=0
b)\(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{x^2-4}\)
ĐKXĐ: x khác +-2
\(\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\)
khử mẫu
(x+1).(x+2)+(x-1)(x-2)=2x2+4
=>x2+x+2+x+2+x2-2x-x+2=2x2+4
=>x2+x+2+x+2+x2-2x-x+2-2x2-4=0
=>(x2+x2-2x2)+(x+x-2x-x)+(2+2+2-4)=0
=>-x+2=0
=>-x=-2
=>x=2(loại)
vậy pt vô nghiệm
ĐKXĐ : \(0\le x\le1\)
Đặt \(\sqrt{x}=a;\sqrt{1-x}=b\left(a;b\ge0\right)\)
Khi đó ta được a2 + b2 = 1 (1)
Lại có phương trình ban đầu trở thành
\(\dfrac{2a^3}{a+b}+ab=1\) (2)
Từ (1) ; (2) ta được \(\dfrac{2a^3}{a+b}+ab=a^2+b^2\)
\(\Leftrightarrow2a^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow a^3=b^3\Leftrightarrow a=b\)
Khi đó \(\sqrt{x}=\sqrt{1-x}\Leftrightarrow x=1-x\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
Vậy tập nghiệm \(S=\left\{\dfrac{1}{2}\right\}\)
\(\left(1+\dfrac{1}{2x}\right).lg3+lg2=lg\left(27-3^{\dfrac{1}{x}}\right)\)
\(\Leftrightarrow lg3^{1+\dfrac{1}{2x}}+lg2=lg\left(27-3^{\dfrac{1}{x}}\right)\)
\(\Leftrightarrow lg\left(2.3^{1+\dfrac{1}{2x}}\right)=lg\left(27-3^{\dfrac{1}{x}}\right)\)
\(\Leftrightarrow2.3^{1+\dfrac{1}{2x}}=27-3^{\dfrac{1}{x}}\)
\(\Leftrightarrow2.3.\left(3^{\dfrac{1}{x}}\right)^2=27-3^{\dfrac{1}{x}}\)
Đặt \(3^{\dfrac{1}{x}}=t\left(t>0\right)\) phương trình trở thành:
\(2.3t^2=27-t\)
\(\Leftrightarrow\left[{}\begin{matrix}t_1=\dfrac{-1-\sqrt{649}}{12}\left(l\right)\\t_2=\dfrac{1+\sqrt{649}}{12}\left(tm\right)\end{matrix}\right.\)
Với \(t=\dfrac{-1-\sqrt{649}}{12}\Leftrightarrow3^{\dfrac{1}{x}}=\dfrac{-1-\sqrt{649}}{12}\)
\(\Leftrightarrow\dfrac{1}{x}=log^{\dfrac{-1-\sqrt{649}}{12}}_3\)
\(\Leftrightarrow x=log^3_{\dfrac{-1-\sqrt{649}}{12}}\).