K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

Phần a sai đề sửa đề

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-{12\sqrt{5}}}}}\)

=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{(2\sqrt{5}-3)^2 } } } \)

=\(\sqrt{5-\sqrt{3-2\sqrt{5}+3 }}\)

=\(\sqrt{\sqrt{5}-\sqrt{(\sqrt{5}-1)^2 } } \)

=\(\sqrt{\sqrt{5}-\sqrt{5}+1 } \)

=1

11 tháng 10 2017

B=\((\sqrt{4+\sqrt{15} }) \sqrt{2}(\sqrt{5}-\sqrt{3})(\sqrt{4-\sqrt{15} })({\sqrt{4+\sqrt{15} }) } \)

=(\((\sqrt{4+\sqrt{15} })\sqrt{2}(\sqrt{5}-\sqrt{3}) \)

=\((\sqrt{8+2\sqrt{15} })(\sqrt{5}-\sqrt{3}) \)

=\((\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3}) \)

=2

24 tháng 9 2023

a)

\(\left(3-\sqrt{15}\right)\sqrt{4+\sqrt{15}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{5+2\sqrt{15}+3}}{\sqrt{2}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}{\sqrt{2}}\\ =\left(\sqrt{9}-\sqrt{15}\right)\cdot\dfrac{\left|\sqrt{5}+\sqrt{3}\right|}{\sqrt{2}}\)

\(=\sqrt{3}\left(\sqrt{3}-\sqrt{5}\right)\cdot\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}\) (vì \(\sqrt{5}+\sqrt{3}>0\))

\(=\sqrt{3}\cdot\dfrac{3-5}{\sqrt{2}}\\ =\sqrt{3}\cdot\dfrac{-2}{\sqrt{2}}\\ =\sqrt{3}\cdot\dfrac{-\sqrt{4}}{\sqrt{2}}\\ =-\sqrt{6}\)

b)

\(\sqrt{29-12\sqrt{5}}-\sqrt{24-8\sqrt{5}}\\ =\sqrt{20-2\cdot3\cdot2\sqrt{5}+9}-\sqrt{20-2\cdot2\cdot2\sqrt{5}+4}\\ =\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}-2\right)^2}\\ =\left|2\sqrt{5}-3\right|-\left|2\sqrt{5}-2\right|\)

\(=2\sqrt{5}-3-\left(2\sqrt{5}-2\right)\) (vì \(2\sqrt{5}-3>0;2\sqrt{5}-2>0\))

\(=2\sqrt{5}-3-2\sqrt{5}+2\\ =-1\)

12 tháng 10 2023

a: \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)

\(=4-\sqrt{15}+\sqrt{15}=4\)

b: \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=2+\sqrt{3}-2+\sqrt{3}\)

\(=2\sqrt{3}\)

c: \(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(=2\sqrt{5}+3-2\sqrt{5}+3=6\)

5 tháng 9 2023

a) \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)

\(=\sqrt{14}\cdot\sqrt{5-\sqrt{21}}+\sqrt{6}\cdot\sqrt{5-\sqrt{21}}\)

\(=\sqrt{14\cdot\left(5-\sqrt{21}\right)}+\sqrt{6\cdot\left(5-\sqrt{21}\right)}\)

\(=\sqrt{70-14\sqrt{21}}+\sqrt{30-6\sqrt{21}}\)

\(=\sqrt{7^2-2\cdot7\cdot\sqrt{21}+\left(\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}\right)^2-2\cdot3\cdot\sqrt{21}+3^2}\)

\(=\sqrt{\left(7-\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}-3\right)^2}\)

\(=\left|7-\sqrt{21}\right|+\left|\sqrt{21}-3\right|\)

\(=7-\sqrt{21}+\sqrt{21}-3\)

\(=4\)

b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\left[4\cdot\left(\sqrt{10}-\sqrt{6}\right)+\sqrt{15}\cdot\left(\sqrt{10}-\sqrt{6}\right)\right]\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

\(=\sqrt{10\cdot\left(4-\sqrt{15}\right)}+\sqrt{6\cdot\left(4-\sqrt{15}\right)}\)

\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=\sqrt{5^2-2\cdot5\cdot\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2\cdot3\cdot\sqrt{15}+3^2}\)

\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)

\(=\left|5-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)

\(=5-\sqrt{15}+\sqrt{15}-3\)

\(=2\)

NV
23 tháng 6 2019

\(A=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)

\(A=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(A=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(A=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(A=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=2\)

\(B=\sqrt{6-2\sqrt{5}}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(B=\sqrt{\left(\sqrt{5}-1\right)^2}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(B=\left(\sqrt{5}-1\right)^2\left(3+\sqrt{5}\right)\)

\(B=\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)=2\)

28 tháng 7 2018

ai nhanh nhat mk se k (neu dung). mk cần gấp

tích mình đi

ai tích mình 

mình tích lại 

thanks

1 tháng 10 2023

\(A=\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\left(2+\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}\right)\)

\(A=\left[2-\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}\right]\left[2+\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}\right]\)

\(A=\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)\)

\(A=2^2-\left(\sqrt{5}\right)^2\)

\(A=4-5\)

\(A=-1\)

____

\(B=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3+\sqrt{6}\right)\left(3-\sqrt{6}\right)}\right]\left(\sqrt{6}+11\right)\)

\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right]\left(\sqrt{6}+11\right)\)

\(B=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)

\(B=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)

\(B=6-121\)

\(B=-115\)

21 tháng 9 2017

a) A=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

=\(\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

=\(\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)(đpcm)

b) B=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

=\(\left(4\sqrt{10}+\sqrt{150}-4\sqrt{6}-\sqrt{90}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

=\(\left(4\sqrt{10}+5\sqrt{6}-4\sqrt{6}-3\sqrt{10}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

=\(\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

=\(5-\sqrt{15}+\sqrt{15}-3=2\)(đpcm)

21 tháng 9 2017

cảm ơn nha =))

a: Sửa đề: \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)

\(=4-\sqrt{15}+\sqrt{15}=4\)

b: \(A=2-\sqrt{3}+\sqrt{3}-1=1\)

c: \(C=3\sqrt{5}-2-3\sqrt{5}-2=-4\)

d: Sửa đề: \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(=2\sqrt{5}+3-2\sqrt{5}+3\)

=6

7 tháng 7 2023

a) \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)

\(A=\left|4-\sqrt{15}\right|+\sqrt{15}\)

\(A=4-\sqrt{15}+\sqrt{15}\)

\(A=4\)

b) \(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)}\)

\(B=\left|2-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\)

\(B=2-\sqrt{3}-1+\sqrt{3}\)

\(B=1\)

c) \(C=\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)

\(C=\sqrt{\left(3\sqrt{5}\right)^2-2\cdot3\sqrt{15}\cdot2+2^2}-\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\sqrt{5}\cdot2+2^2}\)

\(C=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)

\(C=\left|3\sqrt{5}-2\right|-\left|3\sqrt{5}+2\right|\)

\(C=3\sqrt{5}-2-3\sqrt{5}-2\)

\(C=-4\)

d) \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(D=\sqrt{\left(2\sqrt{5}\right)^2+2\cdot2\sqrt{5}\cdot3+3^2}-\sqrt{\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot3+3^3}\)

\(D=\sqrt{\left(2\sqrt{5}+3\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(D=\left|2\sqrt{5}+3\right|-\left|2\sqrt{5}-3\right|\)

\(D=2\sqrt{5}+3-2\sqrt{5}+3\)

\(D=6\)