1) tìm x, y, z: a) x/y+z = y/x+2 = z/x+y ai giải cho mình bài này mình tick cho người đó 10 tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\); 5x-y-z=-10
biến đổi:
\(\frac{x}{19}=\frac{5x}{95}\)
=> \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\)
(=) \(\frac{5x}{95}=\frac{y}{5}=\frac{z}{95}\)
= \(\frac{5x-y-z}{95-5-95}\)
= \(\frac{-10}{-5}=2\)
* \(\frac{x}{19}=2\)=> \(x=19.2=38\)
* \(\frac{y}{5}=2\)=> \(y=2.5=10\)
* \(\frac{z}{95}=2\)=> \(z=95.2=190\)
a.
\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{15+5+3}=\frac{10}{23}\) [theo tính chất của dãy tỉ số bằng nhau]
=> x = 10/23 * 15 = 150/23
y = 10/23 * 5 = 50/23
z = 10/23 * 93 = 30/23
b.
\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}\Leftrightarrow\frac{2x}{30}=\frac{3y}{15}=\frac{z}{3}=\frac{2x-3y+z}{30-15+3}=\frac{32}{18}=\frac{16}{9}\)[theo tính chất của dãy tỉ số bằng nhau]
=> 2x = 16/9 * 30 = 160/3 => x = 80/3
3y = 16/9 * 15 = 80/3 => y = 80/9
z = 16/9 * 3 = 48/9
c.
\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}\Leftrightarrow\frac{x}{15}=\frac{2y}{10}=\frac{3z}{9}=\frac{x+2y-3z}{15+10-9}=\frac{14}{16}=\frac{7}{8}\)[theo tính chất của dãy tỉ số bằng nhau]
=> x = 7/8 * 15 = 105/8
2y = 7/8 * 10 = 70/8 => y = 35/8
3z = 7/8 * 9 = 63/8 => z = 21/8
1,=>2x-5=15 hoặc 2x-5=-15
...(xét 2 trường hợp rồi tự làm nhé)
2,2xy+2y+4y+4=0
x.(2y+2)+4(y+1)=0=>x(2y+2)=0 hoặc 4(y+1)=0
...(tự làm )
3,x+3=(x-2)+5
do x-2 chia hết cho x-2 mà x+3 chia hết cho x-2
=>5 chia hết cho x-2 =>x-2 thuộc {1;-1;5;-5}=>x thuộc {3;1;7;-3}
4, (y-z)+(z+x)=-10+11
(y+x)+(z-z)=1
y+x=1
kết hợp với x-y=-9 ta đưa ra bài toán tổng hiệu và tìm x và y .
thay x;y vào các điều kiện của bài toán ta tìm được x;y;z
5,xy=x+y
xy-x-y=0
x(y-1)-y=0
x(y-1)-y+1=1( cộng cả 2 vế vs 1)
x(y-1)-(y-1)=1
(y-1)(x-1)=1
=>có 2 trường hợp :
TH1:y-1=1 ; x-1=1
TH2:y-1=-1 ; x-1=-1
bạn tự tìm x;y nhé
TICK MÌNH NHÉ . XIN LỖI VÌ KO GIẢI CỤ THỂ CHO BẠN ĐƯỢC VÌ MÌNH RẤT BẬN
Sửa đề:
Lời giải:
\(\dfrac{x}{y+z}=\dfrac{y}{x+z}=\dfrac{z}{x+y}=\dfrac{1}{x+y+z}\)(nghĩ vậy,vì đề bạn thiếu)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z}=\dfrac{y}{x+z}=\dfrac{z}{x+y}=\dfrac{x+y+z}{y+z+x+z+x+y}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)Suy ra: \(\left\{{}\begin{matrix}\dfrac{x}{y+z}=\dfrac{1}{2}\\\dfrac{y}{x+z}=\dfrac{1}{2}\\\dfrac{z}{x+y}=\dfrac{1}{2}\\\dfrac{1}{x+y+z}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+z=2x\\x+z=2y\\x+y=2z\\x+y+z=2\end{matrix}\right.\)
\(\circledast\)Từ \(x+y+z=2\Leftrightarrow y+z=2-x\)
Nên \(2-x=2x\Leftrightarrow3x=2\Leftrightarrow x=\dfrac{2}{3}\)
\(\circledast\)Từ \(x+y+z=2\Leftrightarrow x+z=2-y\)
Nên \(2-y=2y\Leftrightarrow3y=2\Leftrightarrow y=\dfrac{2}{3}\)
\(\circledast\)Từ \(x+y+z=2\Leftrightarrow x+y=2-z\)
Nên \(2-z=2z\Leftrightarrow3z=2\Leftrightarrow z=\dfrac{2}{3}\)
Vậy \(x=y=z=\dfrac{2}{3}\)