Tìm số nguyên x để các phân số sau là số nguyên:;:::
A. 13/x-1 B. x+3/x-2
Mong đc giúp ạ.trình bày dễ hỉu dùm em ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{13}{x-15}\) là số nguyên khi \(x-15\) là ước của 13
\(x-15\in\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{16;14;26;2\right\}\)
Vì \(\frac{13}{x-1}\)thuộc Z nên 13 chia hết cho x-1
Do đó x-1 thuộc Ư(13)={1; 13}
Suy ra x thuộc {0;12}
Vậy x thuộc {0; 12}
Đặt phân số trên là A
Ta có:
\(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3\left(x-1\right)+10}{x-1}=3+\frac{10}{x-1}\)
A nguyên <=> \(\frac{10}{x-1}\in Z\)
<=> x-1 là ước của 10
x-1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | 2 | 0 | 3 | -1 | 6 | -4 | 11 | -9 |
Vậy A nguyên <=> \(x=2;0;3;-1;6;-4;11;-9\)
Để \(\frac{3x+7}{x-1}\) đạt giá trị nguyên
<=> 3x+7 chia hết cho x-1
=> (3x-3)+10 chi hết cho x-1
=> 3(x-1)+10 chia hết cho x-1
Để 3(x-1)+10 chia hết cho x-1
<=> 3(x-1) chia hết cho x-1 (điều này luôn luôn đúng với mọi x)
Và 10 cũng phải chia hết cho x-1
Vì 10 chia hết cho x-1 => x-1 thuộc Ư(10)={-10;-5;-2;-1;1;2;5;10}
Ta có bảng sau:
x-1 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
x | -9 | -4 | -1 | 0 | 2 | 3 | 6 | 11 |
Vậy các giá trị x nguyên thỏa mãn yêu cầu bài toán là: -9;-4;-1;0;2;3;6;11
Ai k mik mik k lại. chúc các bạn thi tốt
1) số nguyên a phải có điều kiện gì để ta có phân số ?
a) \(\frac{32}{a-1}\)
Để ta có phân số thì \(_{a-1\ne0}\).
Kết hợp với điều kiện a là số nguyên theo đầu bài ta tìm được a là số nguyên khác 1 .
Vậy với \(_{a\ne1}\)thì \(_{\frac{32}{a-1}}\)là phân số.
b)\(\frac{a}{5a+30}\)=\(\frac{a}{5\left(a+6\right)}\)
Điều kiện để 5(a+6) là phân số là:
\(_{a+6\ne0\Leftrightarrow a\ne-6}\)
Vậy với \(_{a\ne6}\)thì \(_{\frac{a}{5a+30}}\)là phân số.
2) tìm các số nguyên x để các phân số sau là số nguyên :
a) \(\frac{13}{x-1}\)
Để \(_{\frac{13}{x-1}}\) là số nguyên thì 13 phải chia hết cho x-1.nghĩa là :
x-1 thuộc (+-1,+-13)
=>x thuộc (0,2,-12,14)
Vậy x thuộc (0,2,-12,14)thì 13/x-1 là số nguyên
b) \(\frac{x+3}{x-2}\)
Ta có :
\(_{\frac{x+3}{x-2}}\)= \(_{\frac{x-2+5}{x-2}}\)= \(_{\frac{1+5}{x-2}}\)
để \(_{\frac{x+3}{x-2}}\) là số nguyên thì \(_{\frac{5}{x-2}}\) là số nguyên .
Nghĩa là 5 chia hết cho x-2,hay x-2 thuộc (+-1,+-5)
=>x thuộc (1,3,-3,8)
Vậy x thuộc (1,3-3,8) thì \(_{\frac{x+3}{x-2}}\)là số nguyên.
A nguyên
=>10x-15+6 chia hết cho 2x-3
=>\(2x-3\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{2;1;3;0\right\}\)
Vì \(\frac{15}{x}+4\) là số nguyên
\(\Rightarrow15⋮x\)(hoặc \(x\inƯ\left(15\right)\)
Vậy Ư(15)là:[1,-1,3,-3,5,-5,15,-15]
Do đó \(x\in\)[1,-1,3,-3,5,-5,15,-15]
để phân số trên là số nguyên thì (x+4) thuộc Ư(15)={1,3,5,-1,-3,-5,15,-15}
xét từng TH:
x+4=1=>x=-3
x+4=3=>x=-1
x+4=5=>x=1
x+4=15=>x=11
x+4=-1=>x=-5
x+4=-3=>x=-7
x+4=-5=>x=-9
x+4=-15=>x=-19
vậy x thuộc { -19,-9,-7,-5,-1,1,11,-3}
Để 3x + 7 / x -1 có giá trị nguyên => 3x + 7 chia hết x - 1
=> 3(x-1) + 10 chia hết x - 1
Mà 3(x-1) chia hết x -1
=> 10 chia hết x - 1
=> x - 1 thuộc Ư(10)=............
=>......................Còn lại thì bạn tự làm nha!
@maiban5d : đề đang là x - 1 mà bạn làm là x - 2 ??? :D
Học hỏi trên mạng là tốt, nhưng bạn copy mạng là không ai chấp nhận đâu : )
\(\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\)
Để phân số có giá trị nguyên => \(\frac{2}{x-1}\)nguyên
=> \(2⋮x-1\)
=> \(x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x-1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
Vậy x thuộc các giá trị trên
a) Đk: x khác 2
A = (x + 1)/(x - 2) = (x - 2 + 3)/(x - 2) = 1 + 3/(x - 2)
Để A nguyên <=> 3/(x - 2) thuộc Z
<=> 3 chia hết x - 2
<=> x - 2 thuộc Ư(3) = {1; -1; 3; -3}
Lập bảng
x - 2 1 - 1 3 -3
x 3 1 5 -1
Vậy ....
a: Để A là số nguyên thì \(13⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;13;-13\right\}\)
hay \(x\in\left\{2;0;14;-12\right\}\)
b. Ta có \(B=\dfrac{x+3}{x-2}=\dfrac{x-2+3+2}{x-2}=1+\dfrac{5}{x-2}\)
Để \(B\) nhận giá trị nguyên thì\(5⋮\left(x-2\right)\Rightarrow\left(x-2\right)\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\\x-2=5\\x-2=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=1\\\sqrt{x}=7\\\sqrt{x}=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=9\\x=1\\x=49\end{matrix}\right.\)
Vậy tất cả các x thỏa mãn ycbt là x=9; x=1 hoặc x=49