cho tam giác MNP vuông tại M, trên cạnh NP lấy điểm I bất kì. Gọi D, E lần lượt là điểm đối xứng của I qua MN, MP. Chứng minh D đối xứng với E qua điểm M
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
29 tháng 5 2022
Ta có: I và D đối xứng nhau qua MN
nên MN là đường trung trực của ID
=>MI=MD
=>ΔMID cân tại M
mà MN là đường cao
nên MN là tia phân giác của góc IMD(1)
Ta có: I và E đối xứng nhau qua MP
nên MP là đường trung trực của IE
=>MI=ME
=>ΔMIE cân tại M
mà MP là đường cao
nên MP là tia phân giác của góc IME(2)
Từ (1) và (2) suy ra \(\widehat{EMD}=\widehat{EMI}+\widehat{DMI}=2\cdot90^0=180^0\)
=>E,M,D thẳng hàng
mà MD=ME
nên M là trung điểm của ED
hay E và D đối xứng nhau qua M
7 tháng 1 2023
a: Xét tứ giác MDNE có
I là trung điểm chung của MN và DE
góc MDN=90 độ
Do đó: MDNE là hình chữ nhật
b: Xét tứ giác MNFP có
D là trung điểm chung của MF và NP
MN=MP
Do đó: MNFP là hình thoi
Ta có: I và D đối xứng nhau qua MN
nên MN là đường trung trực của ID
=>MI=MD
=>ΔMID cân tại M
mà MN là đường cao
nên MN là tia phân giác của góc IMD(1)
Ta có: I và E đối xứng nhau qua MP
nên MP là đường trung trực của IE
=>MI=ME
=>ΔMIE cân tại M
mà MP là đường cao
nên MP là tia phân giác của góc EMI(2)
Từ(1) và (2) suy ra \(\widehat{EMD}=2\cdot90^0=180^0\)
=>E,M,D thẳng hàng
mà MD=ME
nên M là trung điểm của ED
=>D và E đối xứng nhau qua M