K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 8 2021

Đặt \(\sqrt{-x^2+2x+15}=t\Rightarrow0\le t\le4\)

BPT trở thành:

\(-4t\ge-t^2+2+m\)

\(\Leftrightarrow t^2-4t-2\ge m\)

\(\Rightarrow m\le\min\limits_{\left[0;4\right]}\left(t^2-4t-2\right)\)

Xét \(f\left(t\right)=t^2-4t-2\) trên \(\left[0;4\right]\)

\(-\dfrac{b}{2a}=2\in\left[0;4\right]\)

\(f\left(0\right)=f\left(4\right)=-2\) ; \(f\left(2\right)=-6\)

\(\Rightarrow f\left(t\right)_{min}=-6\Rightarrow m\le-6\)

2 tháng 12 2017

Chọn C

5 tháng 2 2017

Chọn C

21 tháng 8 2019

Ta có:

\(m^2-4m+3=m^2-4m+4-1=\left(m-2\right)^2-1=\left(m-3\right)\left(m-1\right)\)

\(m-m^2=m\left(1-m\right)\)

Bất phương trình <=> \(\left(m-3\right)\left(m-1\right)x+m\left(1-m\right)< 0\)

+) TH1: \(\left(m-3\right)\left(m-1\right)< 0\)

khi đó: \(x>\frac{m}{m-3}\)(loại)

+) TH2:  \(\left(m-3\right)\left(m-1\right)>0\)

khi đó: \(x< \frac{m}{m-3}\)(loại)

+) Th3: \(\left(m-3\right)\left(m-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=3\end{cases}}\)

Với m=1 ta có: 0x+0<0 vô lí

Với m=3 ta có: \(0x-6< 0\)đúng với mọi x ( thỏa mãn)

Vậy m=3

15 tháng 1 2019

Chọn D

22 tháng 5 2018

* Nếu m= 0 thì bất phương trình đã cho trở  thành: 

0x < 0(  luôn đúng với mọi x).

* Nếu  m= 1 thì bất phương trình đã cho  trở thành:

0x < 1 ( luôn đúng với mọi x)

Tập tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x là {0; 1}

8 tháng 11 2018

+ Khi m = 0, bất phương trình trở thành - 2 x + 2 < 0 ⇔ x > 1 . Vậy m = 0 không thỏa mãn yêu cầu của bài toán.

+ Khi m ≠ 0 , bất phương trình vô nghiệm khi m x 2 + 2 m - 1 x + m + 2 ≥ 0 ,   ∀ x ∈ ℝ . ⇔ a > 0 ∆ ' ≤ 0 ⇔ m > 0 ( m - 1 ) 2 - m ( m + 2 ) ≤ 0 .

⇔ m > 0 - 4 m + 1 ≤ 0 ⇔ m > 0 m ≥ 1 4 ⇔ m ≥ 1 4

Chọn C.